- Upadhyay A, et al. A review on the pharmacological aspects of Terminalia chebula. Int J Pharmacol. 10(6): 289-298.
- Mahesh R, et al. Effect of Terminalia Chebula aqueous extract on oxidative stress and antioxidant status in the liver and kidney of young and aged rats. Cell Biochem Funct. 2009; 27(6): 358-363.
- Saha S, Verma RJ. Antioxidant activity of polyphenolic extract of Terminalia chebula Retzius J Taibah Univ Sci. 2016; 10(6): 805-812.
- Bag A, et al. Anti-inflammatory, anti-lipid peroxidative, antioxidant and membrane stabilizing activities of hydroalcoholic extract of Terminalia chebula Pharm. 2013; 52(12): 1515-1520.
- Feng J, et al. Pinus Massoniana bark extract: Structure-activity relationship and biomedical potentials. Am J Chin Med. 2016; 44(8): 1559-1577.
- Wang C, et al. Effects of polyprenols from pine needles of Pinus massoniana on ameliorating cognitive impairment in a d-galactose-induced mouse model. Age (Dordr). 2014; 36(4)9676.
- Mandal A, et al. Anti-inflammatory mechanism involved in pomegranate-mediated prevention of breast cancer: The role of NF-κB and Nrf2 signaling pathways. Nutrients. 2017; 9(5): 436.
- Singh R, et al. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat Commun. 2019; 10(89).
- Sun YQ, et al. In vitro and in vivo antioxidant activities of three major polyphenolic compounds in pomegranate peel: Ellagic acid, punicalin, and punicalagin. J Integr Agr. 2017; 16(8): 1808-1818.
- Mairuae N, et al. Anti-inflammatory and anti-oxidative effects of Centella asiatica extract in lipopolysaccharide-stimulated BV2 microglial cells. Pharmacogn. 2019; 15(60): 140-146.
- Christinal J, Sumathi T. Effect of Bacopa Monniera extract on methylmercury-induced behavioral and histopathological changes in rats. Biol Trace Elem Res. 2013; 155(1): 56-64.
- Gonzalez-Castejon M, et al. Diverse biological activities of dandelion. Nutr Rev. 70(9): 534-547.
- Liu B, et al. Taraxasterol inhibits LPS-induced inflammatory response in BV2 microglia cells by activating LXRα. Front Pharmacol. 2018; 9: 278.
- Esatbeyoglu T, et al. Sesquiterpene lactone composition and cellular Nrf2 induction of Taraxacum officinale leaves and roots and Taraxinic Acid β-d-Glucopyranosyl Ester. J Med Food. 2017; 20(1): 71-78.
- Chandra N, et al. Bacterial biofilms in human gastrointestinal tract: An intricate balance between health and inflammatory bowel diseases. World J Pharmacol. 2019; 8(3): 26-40.
- Marsh PD, Zaura E. Dental biofilm: ecological interactions in health and disease. J Clin Periodontol. 2017; 44(S18): S12-S22.
- Jamal M, et al. Bacterial biofilm and associated infections. J Chin Med Assoc. 2018; 81(1): 7-11.
- Kurosawa Y, et al. A single-dose of oral nattokinase potentiates thrombolysis and anti-coagulation profiles. Sci Rep. 2015; 5: 11601.
- Iwamoto A, et al. The Japanese fermented food natto inhibits sucrose-dependent biofilm formation by cariogenic Streptococci. Food Sci Technol Res. 2018; 24(1): 129-137.
- Salehi B, et al. Insights on the use of α-lipoic acid for therapeutic purposes. Biomolecules. 2019; 9(8): 356.
- Lonsdale D, et al. Treatment of autism spectrum children with thiamine tetrahydrofurfuryl disulfide: a pilot study. Neuro Endocrinol Lett. 2002; 23(4): 303-308.
- Reddy SY, et al. Thiamine reduces tissue lead levels in rats: mechanism of interaction. Biometals. 2010; 23(2): 247-253.
- Flora SJ, and Sharma RP. Influence of dietary supplementation with thiamine on lead intoxication in rats. Biol Trace Elem Res. 1986; 10(2): 137-144.
- Slyshenkov VS, et al. Pantothenic acid and pantothenol increase biosynthesis of glutathione by boosting cell energetics. FEBS Lett. 2004; 569(1-3): 169-172.
- Eidi A, et al. Hepatoprotective effects of pantothenic acid on carbon tetrachloride-induced toxicity in rats. EXCLI J. 2012; 11: 748-759.
- Hsu CC, et al. Role of vitamin B6 status on antioxidant defenses, glutathione, and related enzyme activities in mice with homocysteine-induced oxidative stress. Food Nutr Res. 2015; 59: 25702.
- Tandon SK, et al. Influence of pyridoxine (vitamin B6) on lead intoxication in rats. Ind Health. 1987; 25(2): 93-96.
- Ursini F and Bindoli A. The role of selenium peroxidases in the protection against oxidative damage of membranes. Chem Phys Lipids. 1987; 44(2-4): 255-276.
- Spiller HA. Rethinking mercury: the role of selenium in the pathophysiology of mercury toxicity. Clin Toxicol. 2018; 56(5): 313-326.
Free Shipping on Orders over $99 (Excludes )