Quicksilver Scientific

Free Shipping on Orders over $50 (Excludes PR)
0
0
Subtotal: $0.00

No products in the cart.

IMD References

  1. Clifton JC., 2nd Mercury exposure and public health. Pediatr Clin North Am. 2007;54(2):237–269. View Abstract
  2. US Department of Health and Human Services, Public Health Service. Toxicological profile for mercury. Atlanta: US Department of Health and Human Services; 1999. pp. 1–600.  View Abstract  
  3. Rice KM et al Environmental mercury and its toxic effects. J Prev Med Public Health. 2014;47(2):74–83. View Full Paper
  4. Berlin M et al. Accumulation and retention of mercury in the mouse: III. An autoradiographic comparison of methylmercuric dicyandiamide with inorganic mercury. Arch Environ Health 6:610, 1963. View Abstract
  5. Norseth T et al. Intestinal transport of 203Hg-labeled methyl mercury chloride: Role of biotransformation in rats. Arch Environ Health 22:568-577, 1971 View Abstract
  6. Clarkson TW et al. Excretion and absorption of methyl mercury after polythiol resin treatment. Arch Environ Health. 1973 Apr;26(4):173-6. View Abstract
  7. Clarkson TW. The three modern faces of mercury. Environ Health Perspect 2002;110:11-23. View Full Paper
  8. Deneke SM. Thiol-based antioxidants. Curr Top Cell Regul. 2000;36:151-80. View Abstract
  9. Berglund F et al. Risk of methyl mercury cumulation in man and mammals and the relation between body burden of methyl mercury and toxic effects, in Miller M, Berg GG (eds): Chemical Fallout. Springfield, Ill, Charles C Thomas Publisher, 1969, p 258.
  10. Sangvanich T. Novel oral detoxification of mercury, cadmium, and lead with thiol-modified nanoporous silica. ACS Appl Mater Interfaces. 2014 Apr 23;6(8):5483-93. View Full Paper
  11. Gill R et al. Low level exposure to inorganic mercury interferes with B cell receptor signaling in transitional type 1 B cells. Toxicol Appl Pharmacol. 2017 Sep 1;330:22-29. View Abstract
  12. Guardiola FA et al. Mercury accumulation, structural damages, and antioxidant and immune status changes in the Gilthead Seabream (Sparus aurata L.) exposed to methylmercury. Arch Environ Contam Toxicol. 2016 May;70(4):734-46. View Abstract
  13. Desforges JP et al. Immunotoxic effects of environmental pollutants in marine mammals. Environ Int. 2016 Jan;86:126-39. View Abstract
  14. de Vos G et al. Selective effect of mercury on Th2-type cytokine production in humans. Immunopharmacol Immunotoxicol. 2007;29(3-4):537-548. View Abstract
  15. Crowe W et al. Mercury as an environmental stimulus in the development of autoimmunity – A systematic review. Autoimmun Rev. Jan 2017;16(1):72-80 View Abstract
  16. Clarkson TW. The toxicology of mercury. Crit Rev Clin Lab Sci. 1997;34(4):369-403.
  17. Morris G et al. The putative role of environmental mercury in the pathogenesis and pathophysiology of autism spectrum disorers and subtypes. Mol Neurobiol. 2017 Jul 22. View Abstract
  18. Geier DA, Kern JK, Geier MR Increased risk for an atypical autism diagnosis following Thimerosal-containing vaccine exposure in the United States: A prospective longitudinal case-control study in the Vaccine Safety Datalink. J Trace Elem Med Biol. 2017 Jul;42:18-24. View Abstract
  19. Pantaleão TU, Ferreira ACF, Santos MCS et al. Effect of thimerosal on thyroid hormones metabolism in rats. Endocr Connect. 2017 Nov;6(8):741-74 View Full Paper
  20. Zhu X, Kusaka Y, Sato K, et al. The endocrine disruptive effects of mercury. Environ Health Prev Med. 2000 Jan;4(4):174-83. View Full Paper
  21. Kisakol G. Dental amalgam implantation and thyroid autoimmunity Bratisl Lek Listy. 2014;115(1):22-4. View Abstract
  22. Iavicoli I, Fontana L, Bergamaschi A. The effects of metals as endocrine disruptors. J Toxicol Environ Health B Crit Rev. Mar 2009;12(3):206-223.
  23. Zeng Q, Feng W, Zhou B Urinary metal concentrations in relation to semen quality: a cross-sectional study in China. Environ Sci Technol. 2015 Apr 21;49(8):5052-9. View Abstract
  24. Buck Louis GM, Smarr MM, Sundaram R et al. Low-level environmental metals and metalloids and incident pregnancy loss. Reprod Toxicol. 2017 Apr;69:68-74. View Abstract
  25. Mieiro CL, Pereira ME, Duarte AC, Pacheco M. Brain as a critical target of mercury in environmentally exposed fish (Dicentrarchus labrax)–bioaccumulation and oxidative stress profiles. Aquat Toxicol. 2011;103:233–240. [PubMed] [Google Scholar]
  26. Kim JS, et al. Increased serum glutamate in depressed patients. Arch Psychiatr Nervenkr. 1982;232 (4):299–304.  View Abstract
  27. Mitani H et al. Correlation between plasma levels of glutamate, alanine and serine with severity of depression. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30 (6):1155–8. [PubMed] [Google Scholar]
  28. Levine J et al. Increased cerebrospinal fluid glutamine levels in depressed patients. Biol Psychiatry. 2000;47 (7):586–93.  View Abstract  
  29. Schoepp DD. Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system. J Pharmacol Exp Ther. 2001;299 (1):12–20. View Abstract
  30. Genchi G et al. Mercury exposure and heart diseases. Int J Environ Res Public Health. 2017;14(1):74 View Full Paper
  31. Fernandes Azevedo B et al. Toxic effects of mercury on the cardiovascular and central nervous systems. J Biomed Biotechnol. 2012;2012:949048. View Full Paper
  32. Breton J et al. Ecotoxicology inside the gut: impact of heavy metals on the mouse microbiome. BMC Pharmacol Toxicol. 2013;14:62. View Full Paper
0
    0
    Your Cart
    Your cart is empty
      Calculate Shipping
      Apply Coupon