KETO BEFORE 6™: THE REJUVENATIVE POWER OF THE KETO DIET WITHOUT THE DEPRIVATION

REFERENCES

1. Manninen AH. Metabolic effects of the very-low-carbohydrate diets: misunderstood ‘villains’ of human metabolism. Journal of the International Society of Sports Nutrition. 2004;1(2):7-11

2. Boison D. New insights into the mechanisms of the ketogenic diet. Curr Opin Neurol. 2017 Apr; 30(2): 187–192.

3. Mair W, Dillin A. Aging and survival: the genetics of life span extension by dietary restriction. Annu Rev Biochem. 2008; 77():727-54.

4. Sinclair DA. Toward a unified theory of caloric restriction and longevity regulation. Mech Ageing Dev 2005;126: 987–1002.

5. Ingram DK, Roth GS. Calorie restriction mimetics: can you have your cake and eat it, too? Ageing Res Rev. 2015 Mar;20:46-62.

6. Moreno CL, Mobbs CV. Epigenetic mechanisms underlying lifespan and age-related effects of dietary restriction and the ketogenic diet. Mol Cell Endocrinol. 2017 Nov 5;455:33-40

7. Paoli A, Rubini A et al. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur J Clin Nutr. 2013;67(8):789-96.

8. Kahn BB, Alquier T et al. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005; 1:15–25.

9. Bland ML, Birnbaum MJ Cell biology. ADaPting to energetic stress. Science. 2011 Jun 17;332(6036):1387-8

10. Ruderman NB, Xu XJ et al. AMPK and SIRT1: a long-standing partnership?. Am J Physiol Endocrinol Metab. 2010;298(4):E751–E760

11. Zong H, Ren JM et al. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci U S A. 2002;99(25):15983–15987

12. Lamia KA, et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science. 2009; 326:437–440.

13. Salminen A, Hyttinen JM et al. AMP-activated protein kinase inhibits NF-kappaB signaling and inflammation: impact on healthspan and lifespan. J Mol Med (Berl.) 2011; 89: 667–676.

14. Ruderman NB, Xu XJ et al. AMPK and SIRT1: a long-standing partnership? Am J Physiol Endocrinol Metab 2010; 298: E751–E760

15. Sahlin K, Tonkonogi M et al. Energy supply and muscle fatigue in humans. Acta Physiol Scand 1998; 162: 261–266.

16. Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev 2012; 11: 230–241.

17. Jeon SM. Regulation and function of AMPK in physiology and diseases. Exp Mol Med. 2016;48(7):e245

18. Coughlan KA, Balon TW et al. Nutrient excess and AMPK downregulation in incubated skeletal muscle and muscle of glucose infused rats. PLoS ONE 2015; 10: e0127388

19. Valentine RJ, Coughlan KA et al. Insulin inhibits AMPK activity and phosphorylates AMPK Ser(4)(8)(5)/(4)(9)(1) through Akt in hepatocytes, myotubes and incubated rat skeletal muscle. Arch Biochem Biophys 2014; 562: 62–6

20. Coughlan KA, Valentine RJ et al. Nutrient excess in AMPK downregulation and insulin resistance. J Endocrinol Diabetes Obes 2013; 1: 1008

21. Gauthier MS, O’Brien EL et al. Decreased AMP-activated protein kinase activity is associated with increased inflammation in visceral adipose tissue and with whole-body insulin resistance in morbidly obese humans. Biochem Biophys Res Commun 2011; 404: 382–387.

22. Steinberg GR, Michell BJ et al. Tumor necrosis factor alpha-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling. Cell Metab 2006; 4: 465–474

23. 9 Ko HJ, Zhang Z et al. Nutrient stress activates inflammation and reduces glucose metabolism by suppressing AMP-activated protein kinase in the heart. Diabetes 2009; 58: 2536–2546

24. Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev 2012; 11: 230–241.

25. Salminen A, Huuskonen J et al. Suuronen T. Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev 2008; 7: 83–105

26. Shaw RJ. LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiol (Oxf). 2009;196(1):65–80

27. Teunis JP van Dam, Fried JT et al. Evolution of the TOR pathway. J Mol Evol. 2011 Oct; 73(3-4): 209–220

28. Jia X, Jian J, et al. Cross-Talk between AMPK and mTOR in regulating energy balance. Critical Reviews in Food Science and Nutrition, 2012;52:5, 373-381

29. Tyagi S, Gupta P et al. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J Adv Pharm Technol Res. 2011;2(4):236–240

30. Wu Z, Puigserver P et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98:115–124

31. Koh JH, PPARβ Is Essential for Maintaining Normal Levels of PGC-1α and Mitochondria and for the Increase in Muscle Mitochondria Induced by Exercise Hancock CR et al. Cell Metab. 2017 May 2;25(5):1176-1185.e5. doi: 10.1016/j.cmet.2017.04.029

32. Oldham S, Montagne J et al. Genetic and biochemical characterization of mTOR, the Drosophila homolog of the target of rapamycin. Genes Dev 2000, 14:2689–2694.

33. Inoki K, Ouyang H et al. Signaling by target of rapamycin proteins in cell growth control. Microbiol Mol Biol Rev 2005, 69:79–100

34. Wullschleger S, Loewith R et al. TOR signaling in growth and metabolism. Cell 2006, 124:471–484.

35. Sulaimanov N, Klose M et al. Understanding the mTOR signaling pathway via mathematical modeling. Wiley Interdiscip Rev Syst Biol Med. 2017;9(4):e1379

36. Kennedy BK, Lamming DW. The mechanistic target of rapamycin: the grand conducTOR of metabolism and aging. Cell Metabolism 2014;23; 990-1003

37. Lamming DW, Sabatini DM, A central role for mTOR in lipid homeostasis. Cell Metab. 2013 Oct 1;18(4):465-9

38. Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci. 2009 Oct 15;122(Pt 20):3589-94

39. Curevo AM, Bergamini E et al. Autophagy and aging: the importance of maintaining “clean” cells. Autophagy, 2005; 1:3, 131-140

40. Seglen P, Bohley P. Autophagy and other vacuolar protein degradation mechanisms. Experientia 1992; 48:58-72.

41. Sohal R, Weindruch R. Oxidative stress, caloric restriction, and aging. Science 1996;273: 59–67

42. Mizushima N, Yamamoto A et al. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 2004; 15:1101-11

43. Markaki M, Palikaras K. Novel insights into the anti-aging role of mitophagy. Int Rev Cell Mol Biol. 2018;340:169-208

44. Markaki M, Palikaras K. Novel insights into the anti-aging role of mitophagy. Int Rev Cell Mol Biol. 2018;340:169-208

45. Palikaris K, Daskalaki I. Mitophagy and age-related pathologies: Development of new therapeutics by targeting mitochondrial turnover. Pharmacol Ther. 2017 Oct;178:157-174

46. Mao K, Klionsky DJ. Xenophagy: A battlefield between host and microbe, and a possible avenue for cancer treatment. Autophagy. 2016;13(2):223-224.

47. Mao K, Klionsky DJ. Xenophagy: A battlefield between host and microbe, and a possible avenue for cancer treatment. Autophagy. 2016;13(2):223-224.

48. McCarty MF, DiNicolantonio JJ et al. Ketosis may promote brain macroautophagy by activating Sirt1 and hypoxia-inducible factor-1. Medical Hypotheses. 2015; (85); 631–639

49. McDaniel SS, Rensing NR et al. The ketogenic diet inhibits the mammalian target of rapamycin (mTOR) pathway. Epilepsia. 2011;52(3):e7-11.

50. Sohal R, Weindruch R. Oxidative stress, caloric restriction, and aging. Science 1996; 273: 59–67

51. Hosseinzade A, Sadeghi O et al. Immunomodulatory effects of flavonoid: possible induction of T CD4+ regulatory cells through suppression of mTOR pathway signaling activity. Front Immunol. 2019 Jan 31;10:51

52. Pallauf K, Rimbach G. Autophagy, polyphenols and healthy ageing. Ageing Research Reviews 2013(12);237– 252

53. Cho HJ, Park J et al. Regulation of adipocyte differentiation and insulin action with rapamycin. Biochem. Biophys. Res. Commun., 2004;321, pp. 942-948

54. Hu Y, Chen Y et al. Pathogenic role of diabetes-induced PPAR-down-regulation in microvascular dysfunction. Proc. Natl. Acad. Sci. USA 2013, 110, 15401–15406.

55. Ahmadian M, Suh J et al. PPAR signaling and metabolism: The good, the bad and the future. Nat. Med. 2013, 19, 557–566.

56. Villena JA. New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial function and beyond. FEBS J. 2015 Feb;282(4):647-72

57. Lee W, Kim M et al. AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPARalpha and PGC-1. Biochem Biophys Res Commun. 2006 Feb 3;340(1):291-5

58. Rodriguez-Cuenca S, Carobbio S et al. Peroxisome proliferator-activated receptor γ-dependent regulation of lipolytic nodes and metabolic flexibility. Mol Cell Biol. 2012 Apr; 32(8): 1555–1565.

59. Yong-Xu W. PPARs: diverse regulators in energy metabolism and metabolic diseases. Cell Research 2010(10):124-137

60. Berger JP, Akiyama TE, Meinke PT. PPARs: Therapeutic targets for metabolic disease. Trends Pharmacol Sci. 2005;26:244–51

61. Liang H, Ward WF. PGC-1alpha: a key regulator of energy metabolism Adv Physiol Educ. 2006 Dec;30(4):145-51.

62. Grabacka M, Pierzchalska M. Regulation of ketone body metabolism and the role of PPARα. Int J Mol Sci. 2016 Dec 13;17(12)

63. Elamin M, Ruskin DN. Ketogenic diet modulates NAD+-dependent enzymes and reduces DNA damage in hippocampus. Front Cell Neurosci. 2018 Aug 30;12:263

64. Imai S, Guarente L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 2014 Aug;24(8):464-71

65. Rho JM, Rogawski MA. The ketogenic diet: stoking the powerhouse of the cell. Epilepsy Curr. 2007 Mar; 7(2): 58–60

66. Hasan-Olive MM, Lauritzen KH et al. A ketogenic diet improves mitochondrial biogenesis and bioenergetics via the PGC1α-SIRT3-UCP2 axis. Neurochem Res. 2019 Jan;44(1):22-37

67. Zang M, Xu S et al. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes. 2006 Aug;55(8):2180-91.

68. Armour SM, Baur JA et al. Inhibition of mammalian S6 kinase by resveratrol suppresses autophagy. Aging (Albany NY). 2009;1(6):515-28

69. Opipari AW Jr, Tan L et al. Resveratrol-induced autophagocytosis in ovarian cancer cells. Cancer Res 2004; 64: 696–703.

70. Miki H, Uehara N et al. Resveratrol induces apoptosis via ROS-triggered autophagy in human colon cancer cells. Int J Oncol 2012; 40:

1020–1028

71. Hsu KF, Wu CL et al. Cathepsin L mediates resveratrol-induced autophagy and apoptotic cell death in cervical cancer cells. Autophagy 2009; 5: 451–460

72. Scarlatti F, Maffei R et al. Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ 2008; 15: 1318–132

73. Sebori R, Kuno A et al. Resveratrol Decreases Oxidative Stress by Restoring Mitophagy and Improves the Pathophysiology of Dystrophin-Deficient mdx Mice. Oxid Med Cell Longev. 2018 Oct 29; 2018: 9179270

74. Braidy N, Jugder BE. Resveratrol as a potential therapeutic candidate for the treatment and management of Alzheimer’s disease. Curr Top Med Chem. 2016;16(17):1951-60

75. Milton-Laskibar I, Aguirre L et al. Do the effects of resveratrol on thermogenic and oxidative capacities in IBAT and skeletal muscle depend on feeding conditions? Nutrients. 2018 Oct 6;10(10)

76. Baur JA, Pearson KJ et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006 Nov 16; 444(7117):337-42

77. Valero T. Mitochondrial biogenesis: pharmacological approaches. Curr Pharm Des. 2014;20(35):5507-9

78. Deng Y, Xu J. et al. Berberine attenuates autophagy in adipocytes by targeting BECN1. Autophagy, 2012; 10(10), 1776–1786

79. Fan A, Wang J. Berberine alleviates ox-LDL induced inflammatory factors by up-regulation of autophagy via AMPK/mTOR signaling pathway. Journal of Translational Medicine, 2015; 13(1), 92.

80. Yao Z, Wan Y. Berberine induces mitochondrial-mediated apoptosis and protective autophagy in human malignant pleural mesothelioma NCI-H2452 cells. Oncol Rep. 2018 Dec;40(6):3603-3610

81. Choi Y, Lee K et al. Activation of AMPK by berberine induces hepatic lipid accumulation by upregulation of fatty acid translocase CD36 in mice. Toxicol Appl Pharmacol. 2017 Feb 1;316:74-82

82. Wang J, Qi Q. Berberine induces autophagy in glioblastoma by targeting the AMPK/mTOR/ULK1-pathway. Oncotarget. 2016 Oct 11;7(41):66944-66958

83. Mahmoud AM, Hozayen WG et al. Berberine ameliorates methotrexate-induced liver injury by activating Nrf2/HO-1 pathway and PPARγ, and suppressing oxidative stress and apoptosis in rats. Biomed Pharmacother. 2017 Oct;94:280-291

84. Li C, He J et al. Berberine regulates type 2 diabetes mellitus related with insulin resistance 2017 Jun;42(12):2254-2260.

85. Kong W, Zhang H et al. Berberine reduces insulin resistance through protein kinase C-dependent up-regulation of insulin receptor expression Metabolism. 2009 Jan;58(1):109-19

86. Gomes AP, Duarte FV et al. Berberine protects against high fat diet-induced dysfunction in muscle mitochondria by inducing SIRT1-dependent mitochondrial biogenesis. Biochim Biophys Acta. 2012 Feb;1822(2):185-95

87. FEng K, Chen Z et al. Quercetin attenuates oxidative stress-induced apoptosis via SIRT1/AMPK-mediated inhibition of ER stress in rat chondrocytes and prevents the progression of osteoarthritis in a rat model J Cell Physiol. 2019 Mar 10.[Epub ahead of print]

88. Kim SG, Kim JR et al. Quercetin-Induced AMP-Activated protein kinase activation attenuates vasoconstriction through LKB1-AMPK signaling pathway. J Med Food. 2018 Feb;21(2):146-153

89. Klappan AK, Hones S. Proteasome inhibition by quercetin triggers macroautophagy and blocks mTOR activity Histochem Cell Biol. 2012 Jan;137(1):25-36

90. Wang K, Liu R et al. Quercetin induces protective autophagy in gastric cancer cells: involvement of Akt-mTOR- and hypoxia-induced factor 1alpha mediated signaling. Autophagy 2011: 7, 966–978.

91. Klappan AK, Hones S. Proteasome inhibition by quercetin triggers macroautophagy and blocks mTOR activity. Histochemistry and Cell Biology 2012; 137, 25–36.

92. Beekman K, Rubió L. The effect of quercetin and kaempferol aglycones and glucuronides on peroxisome proliferator activated receptorgamma (PPAR-γ). Food Funct., 2015, 6, 1098–1107

93. Escande E, Nin V et al. Flavonoid apigenin Is an inhibitor of the NAD+ ase CD38 implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes, 20113; 62(4), 1084-1093.

94. Li X, Wang H et al. Protective effects of quercetin on mitochondrial biogenesis in experimental traumatic brain injury via the Nrf2 signaling pathway. PLoS One. 2016 Oct 25;11(10):e0164237

95. Shaik Y, Caraffa A. Impact of polyphenols on mast cells with special emphasis on the effect of quercetin and luteolin. Cent Eur J Immunol. 2018;43(4):476-481

96. Jiang K, Wang W et al. Silibinin, a natural flavonoid, induces autophagy via ROS-dependent mitochondrial dysfunction and loss of ATP involving BNIP3 in human MCF7 breast cancer cells. Oncol Rep. 2015 Jun;33(6):2711-8

97. Duan WJ, Li QS et al. Silibinin activated ROS-p38-NF-κB positive feedback and induced autophagic death in human fibrosarcoma HT1080 cells. J Asian Nat Prod Res. 2011 Jan;13(1):27-35

98. Bai ZL, Tay V. Silibinin induced human glioblastoma cell apoptosis concomitant with autophagy through simultaneous inhibition of mTOR and YAP. Biomed Res Int. 2018 Mar 26;2018:6165192

99. Feng N, Luo J et al. Silybin suppresses cell proliferation and induces apoptosis of multiple myeloma cells via the PI3K/Akt/mTOR signaling pathway. Mol Med Rep. 2016 Apr;13(4):3243-8.

100. Serviddio G, Bellanti F et al. Silybin exerts antioxidant effects and induces mitochondrial biogenesis in liver of rat with secondary biliary cirrhosis. Free Radic Biol Med. 2014 Aug;73:117-26

101. Liu X, Xu Q et al. Silibinin-induced autophagy mediated by PPARα-sirt1-AMPK pathway participated in the regulation of type I collagen-enhanced migration in murine 3T3-L1 preadipocytes. Mol Cell Biochem. 2019 Jan;450(1-2):1-23

102. Salomone F, Barbagallo I et al. Silibinin Restores NAD+  Levels and Induces the SIRT1/AMPK Pathway in Non-Alcoholic Fatty Liver. Nutrients. 2017 Sep 30;9(10

103. Draza H, Golberg AA e al. Diindolylmethane and its halogenated derivatives induce protective autophagy in human prostate cancer cells via induction of the oncogenic protein AEG-1 and activation of AMP-activated protein kinase (AMPK). Cellular Signaling 2017; (40); 172–182

104. Liang K, Qian WH et al. 3,3’-Diindolylmethane attenuates cardiomyocyte hypoxia by modulating autophagy in H9c2 cells. Molecular Medicine Reports 2017 (16): 9553-9560

105. Draz H, Goldberg AA et al. Diindolylmethane and its halogenated derivatives induce protective autophagy in human prostate cancer cells via induction of the oncogenic protein AEG-1 and activation of AMP-activated protein kinase (AMPK). Cell Signal. 2017 Dec;40:172-182

106. Kong D, Banerjee S. Mammalian target of rapamycin repression by 3,3’-diindolylmethane inhibits invasion and angiogenesis in plateletderived growth factor-D-overexpressing PC3 cells. Cancer Res. 2008 Mar 15;68(6):1927-34

107. Ye Y, Fang Y et al. 3,30-Diindolylmethane induces anti-human gastric cancer cells by the miR-30e-ATG5 modulating autophagy. Biochemical Pharmacology 2016;(115); 77–84

108. Lui Y, She W et al. 3, 3’-Diindolylmethane alleviates steatosis and the progression of NASH partly through shifting the imbalance of Treg/Th17 cells to Treg dominance. Int Immunopharmacol. 2014 Dec;23(2):489-98

109. Xue L, Pestka J et al. 3,3’-Diindolylmethane stimulates murine immune function in vitro and in vivo. J Nutr Biochem. 2008 May;19(5):336-44

110. Chung J, Kim S et al. Trans-cinnamic aldehyde inhibits Aggregatibacter actinomycetemcomitans-induced inflammation in THP-1- derived macrophages via autophagy activation J Periodontol. 2018 Oct;89(10):1262-1271

111. Park KR, Nam D. β-Caryophyllene oxide inhibits growth and induces apoptosis through the suppression of PI3K/AKT/mTOR/S6K1 pathways and ROS-mediated MAPKs activation. Cancer Lett. 2011 Dec 22;312(2):178-88

112. Shen Y, Honma N et al. Cinnamon extract enhances glucose uptake in 3T3-L1 adipocytes and C2C12 myocytes by inducing LKB1-AMPactivated protein kinase signaling. PLoS One. 2014 Feb 14;9(2):e8789

113. Kopp C, Singh SP. Trans-cinnamic acid increases adiponectin and the phosphorylation of AMP-activated protein kinase through G-protein-coupled receptor signaling in 3T3-L1 adipocytes. Int J Mol Sci. 2014 Feb 19;15(2):2906-15

114. Santos HO, da Silva GA. To what extent does cinnamon administration improve the glycemic and lipid profiles? Clin Nutr ESPEN. 2018 Oct;27:1-9

115. Cronise RJ, Sinclair DA et al. The “metabolic winter” hypothesis: a cause of the current epidemics of obesity and cardiometabolic disease. Metab Syndr Relat Disord. 2014;12(7):355-61.

116. Guarente L. Mitochondria—a nexus for aging, calorie restriction, and sirtuins? Cell 2008;132:171–176

117. Condello M, Pellegrini E, Caraglia M, Meschini S. Targeting Autophagy to Overcome Human Diseases. Int J Mol Sci. 2019;20(3):725

118. Ketogenic diets in the treatment of epilepsy. Drug Ther Bull. 2012 Jun;50(6):66-8.

119. Freeman JM. Epilepsy’s big fat answer. Cerebrum 2013;2013:3.

120. Kossoff EH, Zupec-Kania BA et al. Optimal clinical management of children receiving dietary therapies for epilepsy: Updated recommendations of the International Ketogenic Diet Study Group. Epilepsia Open. 2018;3(2):175-192.

121. Volek JS, Phinney SD et al. Carbohydrate restriction has a more favorable impact on the metabolic syndrome than a low fat diet. Lipids 2009; 44: 297–309

122. Yancy Jr WS, Foy M et al. A low-carbohydrate, ketogenic diet to treat type 2 diabetes. Nutr Metab (Lond) 2005; 2: 34

123. Mavropoulos JC, Yancy WS et al. The effects of a low-carbohydrate, ketogenic diet on the polycystic ovary syndrome: a pilot study. Nutr Metab (Lond). 2005;2:35

124. Smith RN, Mann NJ et al. The effect of a high protein, low glycemic-load diet versus a conventional, high glycemi c-load diet on biochemical parameters associated with acne vulgaris: A randomized, investigator-masked, controlled trial. J Am Acad Dermatol 2007; 57: 247–256

125. Nordmann AJ, Nordmann A et al. Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: a metaanalysis of randomized controlled trials. Arch Intern Med 2006; 166: 285–293

126. Klement RJ, Kammerer U. Is there a role for carbohydrate restriction in the treatment and prevention of cancer? Nutr Metab (Lond) 2011; 8: 75

127. Zhou W, Mukherjee P et al. The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer. Nutr Metab (Lond) 2007; 4: 5

128. Masino SA, Ruskin DN. Ketogenic diets and pain. J Child Neurol. 2013;28(8):993-1001

129. Siva N. Can ketogenic diet slow progression of ALS? Lancet Neurol 2006; 5: 476.

130. Gasior M, Rogawski MA et al. Neuroprotective and disease-modifying effects of the ketogenic diet. Behav Pharmacol 2006;17:431-9

131. Stafstrom CE, Rho JM. The ketogenic diet as a treatment paradigm for diverse neurological disorders. Front Pharmacol 2012;3:59.

132. McDonald TJW, Cervenka MC. The expanding role of ketogenic diets in adult neurological disorders. Brain Sci. 2018;8(8):148

133. Van der Auwera I, Wera S et al. A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of alzheimer’s disease. Nutr Metab (Lond) 2005; 2: 28

134. Włodarek D. Role of ketogenic diets in neurodegenerative diseases (Alzheimer’s disease and Parkinson’s disease) Nutrients. 2019;11(1):169

135. Pinto A, Bonucci A et al. Antioxidant and anti-inflammatory activity of ketogenic diet: new perspectives for neuroprotection in Alzheimer’s disease. Antioxidants (Basel). 2018;7(5):63

136. Brehm BJ, Seeley RJ, et al. A randomized trial comparing a very low carbohydrate diet and a calorie-restricted low fat diet on body weight and cardiovascular risk factors in healthy women. J Clin Endocrinol Metab 2003; 88: 1617–1623

137. Johnstone AM, Horgan GW et al. Effects of a high-protein ketogenic diet on hunger, appetite, and weight loss in obese men feeding ad libitum. Am J Clin Nutr 2008; 87: 44–55

138. Ma S, Suzuki K. Keto-Adaptation and endurance exercise capacity, fatigue recovery, and exercise-induced muscle and organ damage prevention: a narrative review. Sports (Basel). 2019 Feb 13;7(2)

139. Volek JS, Sharman MJ et al. Body composition and hormonal responses to a carbohydrate-restricted diet. Metabolism 2002;51:864-870.

140. Hernandez AR, Hernandez CM et al. A ketogenic diet improves cognition and has biochemical effects in prefrontal cortex that are dissociable from hippocampus. Front Aging Neurosci. 2018;10:391

141. Cullingford TE. The ketogenic diet; fatty acids, fatty acid-activated receptors and neurological disorders Prostaglandins Leukot Essent Fatty Acids. 2004 Mar;70(3):253-64

142. Vries K, Strydom M. Bioavailability of resveratrol: Possibilities for enhancement. Journal of Herbal Medicine March 2018; 11; 71-77