Quicksilver Scientific

Due to high demand & labor shortages we are experiencing significant shipping delays. We greatly appreciate your patience. 

Search site wide
Search
0

Unsupported Browser

This website will offer limited functionality in this browser. We only support the recent versions of major browsers like Chrome, Firefox, Safari, and Edge.

Membrane Renewal Protocol References

Membrane Mend™ References quicksilverscientific.com/membranemendreferences/

  1. Casares D, et al. Membrane lipid composition: Effect on membrane and organelle structure, function and compartmentalization and therapeutic avenues. Int J Mol Sci. 2019; 20(9): 2167.
  2. Leekumjorn S, et al. The role of fatty acid unsaturation in minimizing biophysical changes on the structure and local effects of bilayer membranes. Biochim Biophys Acta. 2009; 1788(7): 1508-1516.
  3. Van Meer G, et al. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2009; 9(2): 112-124.
  4. Zorova LD, et al. Mitochondrial membrane potential. Anal Biochem. 2018; 552: 50-59.
  5. Chew S, et al. Impairment of mitochondrial function by particulate matter: Implications for the brain. Neurochem Int. 2020; 135(104694).
  6. Zulkifli-Cunningham Z, et al. Clinical effects of chemical exposures on mitochondrial function. Toxicology. 2017; 391: 90-99.
  7. Lin JH, et al. Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol. 2008; 3: 399-425.
  8. Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell. 2010; 140(6): P900-P917.
  9. Kalghatgi S, et al. Bactericidal Antibiotics Induce Mitochondrial Dysfunction and Oxidative Damage in Mammalian Cells. Sci Transl Med. 2013; 5(192): 192ra85.
  10. Santini SJ, et al. Role of Mitochondria in the Oxidative Stress Induced by Electromagnetic Fields: Focus on Reproductive Systems. Oxid Med Cell Longev. 2018; 2018: 5076271.
  11.  Zorova LD, et al. Mitochondrial membrane potential. Anal Biochem. 2018; 552: 50-59.
  12. Nicolson GL, et al. Clinical uses of membrane lipid replacement supplements in restoring membrane function and reducing fatigue in chronic diseases and cancer. Discoveries (Craiova). 2016; 4(1): e54.
  13. Na JY, et al. Hepatoprotective effect of phosphatidylcholine against carbon tetrachloride liver damage in mice. Biochem Biophys Res Commun. 2015; 460(2): 308-313.
  14. Maev IV, et al. Effectiveness of phosphatidylcholine in alleviating steatosis in patients with non-alcoholic fatty liver disease and cardiometabolic comorbidities (MANPOWER study). BMJ Open Gastroenterol. 2020; 7: e000341.
  15. Kennelly JP, et al. Intestinal de novo phosphatidylcholine synthesis is required for dietary lipid absorption and metabolic homeostasis. J Lipid Res. 2018; 59(9): 1695-1708.
  16. Schneider H, et al. Lipid-based therapy for ulcerative colitis—Modulation of intestinal mucus membrane phospholipids as a tool to influence inflammation. Int J Mol Sci. 2010; 11(10): 4149-4164.
  17. Chen M, et al. Oral phosphatidylcholine improves intestinal barrier function in drug-induced liver injury in rats. Gastroenterol Res Pract. 2019; Article ID 8723460.
  18. Lichtenberger LM. Role of phospholipids in protection of the GI mucosa. Digestive Dis Sci. 2013; 58: 891-893.
  19. Blusztajn JK, et al. Neuroprotective actions of dietary choline. Nutrients. 2017; 9(8): 815.
  20. Ojo JO, et al. Disruption in brain phospholipid content in a humanized tau transgenic model following repetitive mild traumatic brain injury. Front Neurosci. 2018; [online].
  21. Yu C, et al. HC diet inhibited testosterone synthesis by activating endoplasmic reticulum stress in testicular Leydig cells. J Cell Molec Med. 2019; 23(5): 3140-3150.
  22. Wen G, et al. Endoplasmic reticulum stress inhibits expression of genes involved in thyroid hormone synthesis and their key transcriptional regulators in FRTL-5 thyrocytes. PLoS One. 2017; [online].
  23. Lefort N, et al. Dietary Buglossoides Arvensis oil increases circulating n-3 polyunsaturated fatty acids in a dose-dependent manner and enhances lipopolysaccharide-stimulated whole blood interleukin-10—A randomized placebo-controlled trial. Nutrients. 2017; 9(3): 261.
  24. Lefort N, et al. Consumption of Buglossoides arvensis seed oil is safe and increases tissue long-chain n-3 fatty acid content more than flaxseed oil – results of a phase I randomised clinical trial. J Nutr Sci. 2016; 5: e2.
  25. Sztretye M, et al. Astaxanthin: A potential mitochondrial-targeted antioxidant treatment in diseases and with aging. Oxid Med Cell Longev. 2019; 2019: 3849692.

Glutathione References quicksilverscientific.com/glutathionereferences/

  1. Homma T et al. Application of glutathione as anti-oxidative and anti-aging drugs. Curr Drug Metab. 2015;16(7):560-71 View Abstract
  2. Ighodaroab OM et al. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid.  Alexandria Journal of Medicine 2018 (54): 287-293 View Abstract
  3. Szarka A et al. The ascorbate-glutathione-α-tocopherol triad in abiotic stress response. Int J Mol Sci. 2012;13(4):4458-83 View Full Paper
  4. Balendiran GK et al. Cell Biochem Funct. The role of glutathione in cancer. 2004 Nov-Dec;22(6):343-52. View Abstract
  5. Mari M et al. Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal. 2009 Nov;11(11):2685-70 View Full Paper
  6. Perricone C et al. Glutathione: a key player in autoimmunity. Autoimmun Rev. 2009 Jul;8(8):697-701. View Abstract
  7. Dröge W et al. Glutathione and immune function. Proc Nutr Soc. 2000 Nov;59(4):595-600. Review. View Abstract
  8. Bajic VP et al. Glutathione “redox homeostasis” and its relation to cardiovascular disease. Oxidative Medicine and Cellular Longevity 2019 View Abstract
  9. Pizzorno J. Glutathione! Integrative Medicine 2014 (13):1:8-12 View Full Paper
  10. Forman HJ. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med. 2009 Feb-Apr;30(1-2):1-12. View Abstract
  11. Hodges RE et al. Modulation of metabolic detoxification pathways using foods and food-derived components: a scientific review with clinical application. J Nutr Metab. 2015;2015:760689 View Full Paper
  12. Keum YS. Regulation of Nrf2-mediated phase II detoxification and anti-oxidant genes. Biomol Ther. 2012;20(2):144-151. View Abstract
  13. Fraternale A et al. Glutathione and glutathione derivatives in immunotherapy. Biol Chem. 2017 Feb 1;398(2):261-275 View Abstract
  14. Kamide Y. Allergy. Intracellular glutathione redox status in human dendritic cells regulates IL-27 production and T-cell polarization. Allergy. 2011 Sep;66(9):1183-92. View Abstract
  15. Dröge W et al. Functions of glutathione and glutathione disulfide in immunology and immunopathology. FASEB J 1994;8:1131–8. View Abstract
  16. Gambhir JK et al. Correlation between blood antioxidant levels and lipid peroxidation in rheumatoid arthritis. Clin Biochem 1997;30:351–5. View Abstract
  17. Ortona E, Redox state, cell death and autoimmune diseases: a gender perspective. Autoimmun Rev 2008;7:579–84. View Abstract
  18. Griffiths HR. Is the generation of neo-antigenic determinants by free radicals central to the development of autoimmune rheumatoid disease? Autoimmun Rev 2008;7:544–9. View Abstract
  19. Burek CL, Rose NR. Autoimmune thyroiditis and ROS. Autoimmun Rev 2008;7:530–7. View Abstract
  20. Gheita TA et al.  Measurement of malondialdehyde, glutathione, and glutathione peroxidase in SLE patients. Methods Mol Biol. 2014;1134:193-9 View Abstract
  21. Kumar D et al. A link between maternal malnutrition and depletion of glutathione in the developing lens: a possible explanation for idiopathic childhood cataract? Clin Exp Optom. 2013 Nov;96(6):523-8 View Abstract
  22. Teskey G. Glutathione as a marker for human disease. Adv Clin Chem. 2018;87:141-159. View Abstract
  23. Jiang S et al. Glutathione protects against hepatic injury in a murine model of primary Sjögren’s syndrome. Bosn J Basic Med Sci. 2016 Aug 2;16(3):227-31 View Abstract
  24. Sinha R et al. Oral supplementation with liposomal glutathione elevates body stores of glutathione and markers of immune function. Eur J Clin Nutr. 2018 Jan;72(1):105-111 View Abstract
  25. Drisko JA. Chelation Therapy. In: Integrative Medicine (Fourth Edition) 2018: (107): 1004-1014.
  26. Lawley SD et al. Mathematical modeling of the effects of glutathione on arsenic methylation. Theor Biol Med Model. 2014 May 16;11:20. View Abstract
  27. Guildford FT et al. Deficient glutathione in the pathophysiology of mycotoxin-related illness. Toxins (Basel). 2014 Feb 10;6(2):608-23 View Full Paper
  28. Hope JH et al. A review of the diagnosis and treatment of ochratoxin a inhalational exposure associated with human illness and kidney disease including focal segmental glomerulosclerosis. J. Environ. Public Health 2012: 2012, 835059. View Abstract
  29. Damy T et al. Glutathione deficiency in cardiac patients is related to the functional status and structural cardiac abnormalities. PLoS One 2009. (4):3: e4781 vol. 4. View Abstract
  30. Biswas SK et al. Depressed glutathione synthesis precedes oxidative stress and atherogenesis in Apo-E−/− mice. Biochemical and Biophysical Research Communications 2005 (338): 3: 1368–1373 View Abstract
  31. Shimizu H et al. Relationship between plasma glutathione levels and cardiovascular disease in a defined population: the Hisayama study.  Stroke. 2004 (35):9: 2072-2077 View Abstract
  32. de la Asuncion JG et al. Mitochondrial glutathione oxidation correlates with age-associated oxidative damage to mitochondrial DNA. The FASEB Journal. 1996;10(2):333–338. View Abstract
  33. Rae CD et al. Glutathione in the human brain: Review of its roles and measurement by magnetic resonance spectroscopy. Anal Biochem. 2017 Jul 15;529:127-143. View Abstract
  34. Saharan S et al. The emerging role of glutathione in Alzheimer’s disease J Alzheimers Dis. 2014;40(3):519-29. View Abstract
  35. Gambhir JK et al. Correlation between blood antioxidant levels and lipid peroxidation in rheumatoid arthritis. Clin Biochem 1997;30:351–5. View Abstract
  36. Ortona E, Redox state, cell death and autoimmune diseases: a gender perspective. Autoimmun Rev 2008;7:579–84. View Abstract
  37. Griffiths HR. Is the generation of neo-antigenic determinants by free radicals central to the development of autoimmune rheumatoid disease? Autoimmun Rev 2008;7:544–9. View Abstract
  38. Burek CL, Rose NR. Autoimmune thyroiditis and ROS. Autoimmun Rev 2008;7:530–7. View Abstract
  39. Gheita TA et al.  Measurement of malondialdehyde, glutathione, and glutathione peroxidase in SLE patients. Methods Mol Biol. 2014;1134:193-9 View Abstract
  40. Kumar D et al. A link between maternal malnutrition and depletion of glutathione in the developing lens: a possible explanation for idiopathic childhood cataract? Clin Exp Optom. 2013 Nov;96(6):523-8 View Abstract
  41. Teskey G. Gluathione as a marker for human disease. Adv Clin Chem. 2018;87:141-159. View Abstract
  42. Jiang S et al. Glutathione protects against hepatic injury in a murine model of primary Sjögren’s syndrome. Bosn J Basic Med Sci. 2016 Aug 2;16(3):227-31 View Abstract
  1. Pehlivan FE. Vitamin C: An antioxidant agent. InTechOpen. 2017; [online].
  2. Lenton KJ, et al. Vitamin C augments lymphocyte glutathione in subjects with ascorbate deficiency. Am J Clin Nutr. 2003; 77(1): 189-195.
  3. Carpenter KJ. The discovery of vitamin C. Ann Nutr Metab. 2012; 61(3): 259-264.
  4. Pullar JM, et al. The roles of vitamin C in skin health. Nutrients. 2017; 9(8): 866.
  5. Malmir H, et al. Vitamin C intake in relation to bone mineral density and risk of hip fracture and osteoporosis: a systematic review and meta-analysis of observational studies. Br J Nutr. 2018; 119(8): 847-858.
  6. Panush RS, et al. Modulation of certain immunologic responses by vitamin C. III. Potentiation of in vitro and in vivo lymphocyte responses. Int J Vitam Nutr Res Suppl. 1982; 23: 35-47.
  7. Elste V, et al. Emerging evidence on neutrophil motility supporting its usefulness to define vitamin C intake requirements. Nutrients. 2017; 9(5): pii: E503.
  8. Hemila H. Vitamin C and infections. Nutrients. 2017; 9(4): 339.
  9. Travica N, et al. Plasma vitamin C concentrations and cognitive function: A cross-sectional study. Front Aging Neurosci. 2019; 11: 72.
  10. Harrison FE, May JM. Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. Free Radic Biol Med. 2009; 46(6): 719-730.
  11. Kocot J, et al. Does vitamin C influence neurodegenerative diseases and psychiatric disorders? Nutrients. 2017; 9(7): pii: E659.
  12. Gillberg L, et al. Vitamin C – A new player in regulation of the cancer epigenome. Semin Cancer Biol. 2018; 51: 59-67.
  13. Young JI, et al. Regulation of the epigenome by vitamin C. Annu Rev Nutr. 2015; 35: 545-564.
  14. Mustafi S, et al. Vitamin C supplementation expands the therapeutic window of BETi for triple negative breast cancer. E Bio Medicine. 2019; 43: 102-210.
  15. Mustafi S, et al. Vitamin C sensitizes melanoma to BET inhibitors. Cancer Res. 2018; 78(2): 572-583.
  16. Pires AS, et al. Ascorbic acid chemosensitizes colorectal cancer cells and synergistically inhibits tumor growth. Front Physiol. 2018; 9: 911.
  17. May JM, Harrison FE. Role of vitamin C in the function of the vascular endothelium. Antioxid Redox Signal. 2013; 19(17): 2068-2083.
  18. Ashor AW, et al. Effect of vitamin C on endothelial function in health and disease: a systematic review and meta-analysis of randomised controlled trials. Atherosclerosis. 2014; 235(1): 9-20.
  19. Juraschek SP, et al. Effects of vitamin C supplementation on blood pressure: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2012; 95(5): 1079-1088.
  20. Ellulu MS, et al. Effect of vitamin C on inflammation and metabolic markers in hypertensive and/or diabetic obese adults: a randomized controlled trial. Drug Des Devel Ther. 2015; 9: 3405-3412.
  21. Basili S, et al. Intravenous ascorbic acid infusion improves myocardial perfusion grade during elective percutaneous coronary intervention: relationship with oxidative stress markers. JACC Cardiovasc Interv. 2010; 3(2): 221-229.
  22. Dingchao H, et al. The protective effects of high-dose ascorbic acid on myocardium against reperfusion injury during and after cardiopulmonary bypass. Thorac Cardiovasc Surg. 1994; 42(5): 276-278.
  23. Schleicher RL, et al. Serum vitamin C and the prevalence of vitamin C deficiency in the United States: 2003-2004 National Health and Nutrition Examination Survey (NHANES). Am J Clin Nutr. 2009; 90(5): 1252-1263.
  24. Nishikawa F, et al. Ascorbate metabolism in harvested broccoli. J Experiment Bot. 2003; 54(392): 2439-2448.
  25. Sapei L, Hwa L. Study on the kinetics of vitamin C degradation in fresh strawberry juices. Procedia Chem. 2014; 9: 62-68.
  26. Li Y, Schellhorn HE. New developments and novel therapeutic perspectives for vitamin C. J Nutr. 2007; 137(10): 2171-2184.
  27. Davis JL, et al. Liposomal-encapsulated ascorbic acid: Influence on vitamin C bioavailability and capacity to protect against ischemia–reperfusion injury. Nutr Metab Insights. 2016; 9: 25-30

NAD+ Platinum References quicksilverscientific.com/nadplatinumreferences/

  1. Longo VD et al. Interventions to Slow Aging in Humans: Are We Ready? Aging Cell 14 (4): 497-510. 
  2. Fang EF et al. NAD (+) in aging: molecular mechanisms and translational implications. Trends Mol Med. 2017;23(10):899–916
  3. Keller K and Engelhardt M. Strength and muscle mass loss with the aging process. Age and strength loss. Muscles Ligaments Tendons J. 2013; 3(4): 346-350.
  4. Chang AM and Halter JB. Aging and insulin secretion. Am J Physiol Endocrinol Metab. 2003; 284(1): E7-12.
  5. Caito SW and Aschner M. NAD+ Supplementation attenuates methylmercury dopaminergic and mitochondrial toxicity in Caenorhabditis Elegans. Toxicol Sci. 2016; 151(1): 139-149.
  6. Gizem Kivrak E, et al. Effects of electromagnetic fields exposure on the antioxidant defense system. J Microsc Ultrastruct. 2017; 2017; 5(4): 167-176.
  7. Xie N, et al. NAD+ metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct Target Ther. 2020; 5: 227.
  8. Hong W, et al. Nicotinamide mononucleotide: A promising molecule for therapy of diverse diseases by targeting NAD+ metabolism. Front Cell Dev Biol. 2020.
  9. Wu, L et al. The elusive NMN transporter is found. Nat Metab 2019: 1; 8-9
  10. Yamaguchi S and Yoshino J. Adipose tissue NAD+ biology in obesity and insulin resistance: From mechanism to therapy. Bioessays. 2017; 39(5): 10.1002/bies.201600227.
  11. Guarente L, Franklin H. Epstein lecture: sirtuins, aging, and medicine. N Engl J Med. (2011) 364:2235–44.
  12. Kane AE, Sinclair DA. Sirtuins and NAD+ in the development and Treatment of Metabolic and Cardiovascular Diseases. Circ Res. 2018; 123:868-885.
  13. Mangerich A, et al. Pleiotropic cellular functions of PARP1 in longevity and aging: Genome maintenance meets inflammation. Oxid Med Cell Longev. 2012; 2012: 321653.
  14. Bonkowski MS and Sinclair D. Slowing aging by design: the rise of NAD+ and sirtuin-activating compounds. Nat Rev Mol Cell Biol. 2016; 17(11): 679-690.
  15. Lewinska A, et al. AMPK-mediated senolytic and senostatic activity of quercetin surface functionalized Fe3O4 nanoparticles during oxidant-induced senescence in human fibroblasts. Redox Biol. 2020; 28: 101337.
  16. Jesko H, et al. Sirtuins and their roles in brain aging and neurodegenerative disorders. Neurochem Res. 2017; 42(3): 876-890.
  17. Warren JL, et al. Regulation of adaptive immune cells by sirtuins. Front Endocrinol (Lausanne). 2019; 10:466.
  18. Radak Z, et al. The systemic role of SIRT1 in exercise mediated adaptation. Redox Biol. 2020; 35: 101467.
  19. Vargas-Ortiz K, et al. Exercise and sirtuins: A way to mitochondrial health in skeletal muscle. Int J Mol Sci. 2019; 20(11): 2717.
  20. Asher G, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 2008; 134(2): 317-328.
  21. Grabowska W, et al. Sirtuins, a promising target in slowing down the ageing process. Biogerontology. 2017; 18(4): 447-476.
  22. Schafer MJ, et al. Exercise prevents diet-induced cellular senescence in adipose tissue. Diabetes. 2016; 65(6): 1606-1615.
  23. Han YM, et al. β-Hydroxybutyrate prevents vascular senescence through hnRNP A1-mediated upregulation of Oct4. Mol Cell. 2018; 71(6): 1064-1078.
  24. Weng Z, et al. Quercetin is more effective than cromolyn in blocking human mast cell cytokine release and inhibits contact dermatitis and photosensitivity in humans. PLoS One. 2012; 7(3): e33805.
  25. Mohar DS and Malik S. The sirtuin system: The holy grail of resveratrol? J Clin Exp Cardiol. 2012; 3(11): 216.
  26. Hustad S, et al. Riboflavin and methylenetetrahydrofolate reductase. Madame Curie Bioscience Database. 2013.
  27. Ahn H, Park JH. Liposomal delivery systems for intestinal lymphatic drug transport.Biomater Res. 2016 Nov 23;20:36View Full Paper
  28. Alyautdin R et al. Nanoscale drug delivery systems and the blood brain barrier.  Int J Nanomedicine. 2014 Feb 7;9:795-811View Full Paper

Ultra Vitamin® References quicksilverscientific.com/ultravitaminreferences/

  1. Chouliaras L, et al. Peripheral DNA methylation, cognitive decline, and brain aging: pilot findings from the Whitehall II imaging study. Epigenomics. 2018; 10(5): 585-595.
  2. Liu G, et al. DNA methylation and the potential role of methyl-containing nutrients in cardiovascular diseases. Oxid Med Cell Longev. 2017; 2017: 1670815.
  3. Ulrich CM, et al. Metabolic, hormonal, and immunological associations with global DNA methylation among postmenopausal women. Epigenetics. 2012; 7(9): 1020-1028.
  4. Samodien E, et al. Diet‐induced DNA methylation within the hypothalamic arcuate nucleus and dysregulated leptin and insulin signaling in the pathophysiology of obesity. Food Sci Nutr. 2019; 7(10): 3131-3145.
  5. Anderson OS, et al. Nutrition and epigenetics: An interplay of dietary methyl donors, one-carbon metabolism, and DNA methylation. J Nutr Biochem. 2012; 23(8): 853-859.
  6. Zeisel S. Choline, other methyl-donors and epigenetics. Nutrients. 2017; 9(5).
  7. Bird JK, et al. Risk of deficiency in multiple concurrent micronutrients in children and adults in the United States. Nutrients. 2017; 9(7): 655.
  8. Depeint F, et al. Mitochondrial function and toxicity: Role of the B vitamin family on mitochondrial energy metabolism. Chem Biol Interact. 2006; 163(1-2): 94-112.
  9. Kennedy DO. B vitamins and the brain: Mechanisms, dose and efficacy—A review. Nutrients. 2016; 8(2): 68.
  10. Pehlivan FE. Vitamin C: An antioxidant agent. IntechOpen. 2016; [online].
  11. Carr AC, Maggini S. Vitamin C and immune function. Nutrients. 2017; 9(11): 1211.
  12. Young JI, et al. Regulation of the epigenome by vitamin C. Annu Rev Nutr. 2015; 35: 545-564.
  13. Lykkesfeldt J, Tveden-Nyborg P. The pharmacokinetics of vitamin C. Nutrients. 2019; 11(10): 2412.
  14. Sato T, et al. Comparison of menaquinone-4 and menaquinone-7 bioavailability in healthy women. Nutr J. 2012; 11: 93.
  15. Akbari S, et al. Vitamin K and bone metabolism: A review of the latest evidence in preclinical studies. Biomed Res Int. 2018; 2018: 4629383.
  16. Simes DC, et al. Vitamin K as a powerful micronutrient in aging and age-related diseases: Pros and cons from clinical studies. Int J Mol Sci. 2019; 20(17): 4150.
  17. Peh HY, et al. Vitamin E therapy beyond cancer: Tocopherol versus tocotrienol. Pharmacol Ther. 2016; 162: 152-169.
  18. Sen CK, et al. Tocotrienols: Vitamin E beyond tocopherols. Life Sci. 2006; 78(18): 2088-2098.
  19. Bell TD, et al. The biology and pathology of vitamin D control in bone. J Cell Biochem. 2010; 111(1): 7-13.
  20. Kheiri B, et al. Vitamin D deficiency and risk of cardiovascular diseases: a narrative review. Clin Hypertens. 2018; 24: 9.
  21. Khammissa RAG, et al. Vitamin D deficiency as it relates to oral immunity and chronic periodontitis. Int J Dent. 2018; 2018: 7315797.
  22. Shang M, Sun J. Vitamin D/VDR, probiotics, and gastrointestinal diseases. Curr Med Chem. 2017; 24(9): 876-887.
  23. Anjum I, et al. The role of vitamin D in brain health: A mini literature review. Cureus. 2018; 10(7): e2960.
  24. Parva NR, et al. Prevalence of vitamin D deficiency and associated risk factors in the US population (2011-2012). Cureus. 2018; 10(6): e2741.
  25. Tang G. Bioconversion of dietary provitamin A carotenoids to vitamin A in humans. Am J Clin Nutr. 2010; 91(5): 1468S-1473S.
  26. Czarnewski P, et al. Retinoic acid and its role in modulating intestinal innate immunity. Nutrients. 2017; 9(1): 68.
  27. Iyer N, Vaishnava S. Vitamin A at the interface of host–commensal–pathogen interactions. PLoS Pathog. 2019; 15(6): e1007750.
  28. Wolf G. The discovery of the visual function of vitamin A. J Nutr. 2001; 131(6): 1647-1650.
  29. Zasada M, Budzisz E. Retinoids: active molecules influencing skin structure formation in cosmetic and dermatological treatments. Postepy Dermatol Alergol. 2019; 36(4): 392-397.
  30. Long MD, et al. Vitamin D receptor and RXR in the post-genomic era. J Cell Physiol. 2015; 230(4): 758-766.
  31. Van Ballegooijen AJ, et al. The synergistic interplay between vitamins D and K for bone and cardiovascular health: A narrative review. Int J Endocrinol. 2017; 2017: 7454376.
  32. Li H, et al. Lutein suppresses oxidative stress and inflammation by Nrf2 activation in an osteoporosis rat model. Med Sci Monit. 2018; 24: 5071-5075.
  33. Zou X, et al. Zeaxanthin induces Nrf2-mediated phase II enzymes in protection of cell death. Cell Death and Dis. 2014; 5: e1218.
  34. Lian F, et al. Enzymatic metabolites of lycopene induce Nrf2-mediated expression of phase II detoxifying/antioxidant enzymes in human bronchial epithelial cells. Int J Cancer. 2008; 123(6): 1262-1268.
  35. Stringham JM, et al. Lutein across the lifespan: From childhood cognitive performance to the aging eye and brain. Curr Dev Nutr. 2019; 3(7): nzz066.
  36. Przybylska S. Lycopene – a bioactive carotenoid offering multiple health benefits: a review. Food Sci Technol. 2019; [early view online version].
  37. Alyautdin R, et al. Nanoscale drug delivery systems and the blood-brain barrier. Int J Nanomedicine. 2014; 9: 795-811.
  38. Ahn H, et al. Liposomal delivery systems for intestinal lymphatic drug transport. Biomater Res. 2016; 20: 36.
  39. Spector AA, et al. Membrane lipid composition and cellular function. J Lipid Res. 1985; 26(9): 1015-1035.
0
Your Cart

cyber monday

SALE

25% OFF

USE CODE: CM25

25% OFF Site-Wide

USE CODE: BF25

Exclusions apply: Offer does not include the following products: All Detox Protocols (except Push-Catch), Bio-Age Reversal Protocol, 30-Day Reset, Quinton® and QuintEssential® products, Biocidin® LSF, Clearway Cofactors®, and H2 Elite®. Discount cannot be combined with any other offers, promotions, or coupons.