Quicksilver Scientific

Due to high demand & labor shortages we are experiencing significant shipping delays. We greatly appreciate your patience. 

Search site wide
Search
0

Unsupported Browser

This website will offer limited functionality in this browser. We only support the recent versions of major browsers like Chrome, Firefox, Safari, and Edge.

Triplicity Longevity Protocol References

Longevity Elite™ References quicksilverscientific.com/longevityelitereferences/

  1. Yan YX, et al. Investigation of the relationship between chronic stress and insulin resistance in a Chinese population. J Epidemiol. 2016; 26(7): 355-360.
  2. Lupien SJ et al. Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nature Neurosci. 1998; 1: 69-73.
  3. Braun TP and Marks DL. The regulation of muscle mass by endogenous glucocorticoids. Front Physiol. 2015; 6:12.
  4. Seiler A, et al. The impact of everyday stressors on the immune system and health. Stress Challenges and Immunity in Space. Spring, Cham. 2020.
  5. Epel ES and Lithgow GJ. Stress biology and aging mechanisms: Toward understanding the deep connection between adaptation to stress and longevity. J Gerontol A Biol Sci Med Sci. 2014; 69 (Suppl 1): S10-S16.
  6. Brewer RA, et al. Targeting glucose metabolism for healthy aging. Nutr Healthy Aging. 2016; 4(1): 31-46.
  7. Brahimaj A, et al. Serum dehydroepiandrosterone levels are associated with lower risk of type 2 diabetes: the Rotterdam Study. Diabetologia. 2017; 60(1): 98-106.
  8. Rocamora-Reverte L et al. T-cell autonomous death induced by regeneration of inert glucocorticoid metabolites. Cell Death Dis. 2017; 8: e2948. 
  9. Jiang Y, et al. Basal cortisol, cortisol reactivity, and telomere length: a systematic review and meta-analysis. Psychoneuroendocrinology.2019; 103: 163-172.
  10. Mayo W, et al. Pregnenolone sulfate and aging of cognitive functions: behavioral, neurochemical, and morphological investigations. Horm Behav. 2001; 40(2): 215-217.
  11. Baulieu EE, et al. Dehydroepiandrosterone (DHEA), DHEA sulfate, and aging: Contribution of the DHEAge Study to a sociomedical issue. Proc Natl Acad Sci USA. 2000; 97(8): 4279-4284.
  12. Guinobert I, et al. The use of natural agents to counteract telomere shortening: Effects of a multi-component extract of Astragalus mongholicus Bunge and danazol. Biomedicines. 2020; 8(2): 31.
  13. Costa IM et al. Astragaloside IV supplementation promotes a neuroprotective effect in experimental models of neurological disorders: A systematic review. Curr Neuropharmacol. 2019; 17(7): 648-665.
  14. Park HJ et al. The effects of Astragalus Membranaceus on repeated restraint stress-induced biochemical and behavioral responses. Korean J Physiol Pharmacol. 2009; 13(4): 315-319.
  15. Zheng Y et al. A review of the pharmacological action of Astragalus Polysaccharide. Front Pharmacol. 2020; 11: 349. 
  16. Park J, et al. Effects of ginseng on two main sex steroid hormone receptors: estrogen and androgen receptors. J Ginseng Res. 2017; 41(2): 215-221.
  17. Park J, et al. Effects of ginseng on two main sex steroid hormone receptors: estrogen and androgen receptors. J Ginseng Res. 2017; 41(2): 215-221.
  18. Yang Y, et al. Ginseng: An nonnegligible natural remedy for healthy aging. Aging Dis. 2017; 8(6): 708-720.
  19. Al-Dujaili EA, et al. Effects of ginseng ingestion on salivary testosterone and DHEA levels in healthy females: An exploratory study. Nutrients. 2020; 12(6): 1582.
  20. Kim J, et al. AMPK activators: mechanisms of action and physiological activities. Exp Mol Med. 2016; 48(4): e224.

Membrane Mend™ References quicksilverscientific.com/membranemendreferences/

  1. Casares D, et al. Membrane lipid composition: Effect on membrane and organelle structure, function and compartmentalization and therapeutic avenues. Int J Mol Sci. 2019; 20(9): 2167.
  2. Leekumjorn S, et al. The role of fatty acid unsaturation in minimizing biophysical changes on the structure and local effects of bilayer membranes. Biochim Biophys Acta. 2009; 1788(7): 1508-1516.
  3. Van Meer G, et al. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2009; 9(2): 112-124.
  4. Zorova LD, et al. Mitochondrial membrane potential. Anal Biochem. 2018; 552: 50-59.
  5. Chew S, et al. Impairment of mitochondrial function by particulate matter: Implications for the brain. Neurochem Int. 2020; 135(104694).
  6. Zulkifli-Cunningham Z, et al. Clinical effects of chemical exposures on mitochondrial function. Toxicology. 2017; 391: 90-99.
  7. Lin JH, et al. Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol. 2008; 3: 399-425.
  8. Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell. 2010; 140(6): P900-P917.
  9. Kalghatgi S, et al. Bactericidal Antibiotics Induce Mitochondrial Dysfunction and Oxidative Damage in Mammalian Cells. Sci Transl Med. 2013; 5(192): 192ra85.
  10. Santini SJ, et al. Role of Mitochondria in the Oxidative Stress Induced by Electromagnetic Fields: Focus on Reproductive Systems. Oxid Med Cell Longev. 2018; 2018: 5076271.
  11.  Zorova LD, et al. Mitochondrial membrane potential. Anal Biochem. 2018; 552: 50-59.
  12. Nicolson GL, et al. Clinical uses of membrane lipid replacement supplements in restoring membrane function and reducing fatigue in chronic diseases and cancer. Discoveries (Craiova). 2016; 4(1): e54.
  13. Na JY, et al. Hepatoprotective effect of phosphatidylcholine against carbon tetrachloride liver damage in mice. Biochem Biophys Res Commun. 2015; 460(2): 308-313.
  14. Maev IV, et al. Effectiveness of phosphatidylcholine in alleviating steatosis in patients with non-alcoholic fatty liver disease and cardiometabolic comorbidities (MANPOWER study). BMJ Open Gastroenterol. 2020; 7: e000341.
  15. Kennelly JP, et al. Intestinal de novo phosphatidylcholine synthesis is required for dietary lipid absorption and metabolic homeostasis. J Lipid Res. 2018; 59(9): 1695-1708.
  16. Schneider H, et al. Lipid-based therapy for ulcerative colitis—Modulation of intestinal mucus membrane phospholipids as a tool to influence inflammation. Int J Mol Sci. 2010; 11(10): 4149-4164.
  17. Chen M, et al. Oral phosphatidylcholine improves intestinal barrier function in drug-induced liver injury in rats. Gastroenterol Res Pract. 2019; Article ID 8723460.
  18. Lichtenberger LM. Role of phospholipids in protection of the GI mucosa. Digestive Dis Sci. 2013; 58: 891-893.
  19. Blusztajn JK, et al. Neuroprotective actions of dietary choline. Nutrients. 2017; 9(8): 815.
  20. Ojo JO, et al. Disruption in brain phospholipid content in a humanized tau transgenic model following repetitive mild traumatic brain injury. Front Neurosci. 2018; [online].
  21. Yu C, et al. HC diet inhibited testosterone synthesis by activating endoplasmic reticulum stress in testicular Leydig cells. J Cell Molec Med. 2019; 23(5): 3140-3150.
  22. Wen G, et al. Endoplasmic reticulum stress inhibits expression of genes involved in thyroid hormone synthesis and their key transcriptional regulators in FRTL-5 thyrocytes. PLoS One. 2017; [online].
  23. Lefort N, et al. Dietary Buglossoides Arvensis oil increases circulating n-3 polyunsaturated fatty acids in a dose-dependent manner and enhances lipopolysaccharide-stimulated whole blood interleukin-10—A randomized placebo-controlled trial. Nutrients. 2017; 9(3): 261.
  24. Lefort N, et al. Consumption of Buglossoides arvensis seed oil is safe and increases tissue long-chain n-3 fatty acid content more than flaxseed oil – results of a phase I randomised clinical trial. J Nutr Sci. 2016; 5: e2.
  25. Sztretye M, et al. Astaxanthin: A potential mitochondrial-targeted antioxidant treatment in diseases and with aging. Oxid Med Cell Longev. 2019; 2019: 3849692.

NAD+ Platinum quicksilverscientific.com/nadplatinumreferences/

  1. Longo VD et al. Interventions to Slow Aging in Humans: Are We Ready? Aging Cell 14 (4): 497-510. 
  2. Fang EF et al. NAD (+) in aging: molecular mechanisms and translational implications. Trends Mol Med. 2017;23(10):899–916
  3. Keller K and Engelhardt M. Strength and muscle mass loss with the aging process. Age and strength loss. Muscles Ligaments Tendons J. 2013; 3(4): 346-350.
  4. Chang AM and Halter JB. Aging and insulin secretion. Am J Physiol Endocrinol Metab. 2003; 284(1): E7-12.
  5. Caito SW and Aschner M. NAD+ Supplementation attenuates methylmercury dopaminergic and mitochondrial toxicity in Caenorhabditis Elegans. Toxicol Sci. 2016; 151(1): 139-149.
  6. Gizem Kivrak E, et al. Effects of electromagnetic fields exposure on the antioxidant defense system. J Microsc Ultrastruct. 2017; 2017; 5(4): 167-176.
  7. Xie N, et al. NAD+ metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct Target Ther. 2020; 5: 227.
  8. Hong W, et al. Nicotinamide mononucleotide: A promising molecule for therapy of diverse diseases by targeting NAD+ metabolism. Front Cell Dev Biol. 2020.
  9. Wu, L et al. The elusive NMN transporter is found. Nat Metab 2019: 1; 8-9
  10. Yamaguchi S and Yoshino J. Adipose tissue NAD+ biology in obesity and insulin resistance: From mechanism to therapy. Bioessays. 2017; 39(5): 10.1002/bies.201600227.
  11. Guarente L, Franklin H. Epstein lecture: sirtuins, aging, and medicine. N Engl J Med. (2011) 364:2235–44.
  12. Kane AE, Sinclair DA. Sirtuins and NAD+ in the development and Treatment of Metabolic and Cardiovascular Diseases. Circ Res. 2018; 123:868-885.
  13. Mangerich A, et al. Pleiotropic cellular functions of PARP1 in longevity and aging: Genome maintenance meets inflammation. Oxid Med Cell Longev. 2012; 2012: 321653.
  14. Bonkowski MS and Sinclair D. Slowing aging by design: the rise of NAD+ and sirtuin-activating compounds. Nat Rev Mol Cell Biol. 2016; 17(11): 679-690.
  15. Lewinska A, et al. AMPK-mediated senolytic and senostatic activity of quercetin surface functionalized Fe3O4 nanoparticles during oxidant-induced senescence in human fibroblasts. Redox Biol. 2020; 28: 101337.
  16. Jesko H, et al. Sirtuins and their roles in brain aging and neurodegenerative disorders. Neurochem Res. 2017; 42(3): 876-890.
  17. Warren JL, et al. Regulation of adaptive immune cells by sirtuins. Front Endocrinol (Lausanne). 2019; 10:466.
  18. Radak Z, et al. The systemic role of SIRT1 in exercise mediated adaptation. Redox Biol. 2020; 35: 101467.
  19. Vargas-Ortiz K, et al. Exercise and sirtuins: A way to mitochondrial health in skeletal muscle. Int J Mol Sci. 2019; 20(11): 2717.
  20. Asher G, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 2008; 134(2): 317-328.
  21. Grabowska W, et al. Sirtuins, a promising target in slowing down the ageing process. Biogerontology. 2017; 18(4): 447-476.
  22. Schafer MJ, et al. Exercise prevents diet-induced cellular senescence in adipose tissue. Diabetes. 2016; 65(6): 1606-1615.
  23. Han YM, et al. β-Hydroxybutyrate prevents vascular senescence through hnRNP A1-mediated upregulation of Oct4. Mol Cell. 2018; 71(6): 1064-1078.
  24. Weng Z, et al. Quercetin is more effective than cromolyn in blocking human mast cell cytokine release and inhibits contact dermatitis and photosensitivity in humans. PLoS One. 2012; 7(3): e33805.
  25. Mohar DS and Malik S. The sirtuin system: The holy grail of resveratrol? J Clin Exp Cardiol. 2012; 3(11): 216.
  26. Hustad S, et al. Riboflavin and methylenetetrahydrofolate reductase. Madame Curie Bioscience Database. 2013.
  27. Ahn H, Park JH. Liposomal delivery systems for intestinal lymphatic drug transport.Biomater Res. 2016 Nov 23;20:36View Full Paper
  28. Alyautdin R et al. Nanoscale drug delivery systems and the blood brain barrier.  Int J Nanomedicine. 2014 Feb 7;9:795-811View Full Paper
0
Your Cart

cyber monday

SALE

25% OFF

USE CODE: CM25

25% OFF Site-Wide

USE CODE: BF25

Exclusions apply: Offer does not include the following products: All Detox Protocols (except Push-Catch), Bio-Age Reversal Protocol, 30-Day Reset, Quinton® and QuintEssential® products, Biocidin® LSF, Clearway Cofactors®, and H2 Elite®. Discount cannot be combined with any other offers, promotions, or coupons.