Quicksilver Scientific

Free ground shipping over $50 (excludes HI, AK, & PR)

0

Unsupported Browser

This website will offer limited functionality in this browser. We only support the recent versions of major browsers like Chrome, Firefox, Safari, and Edge.

Biocidin LSF References

  1. Lebeaux D, et al. From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens. 2013; 2(2): 288-356.
  2. Penesyan, A, et al. Rapid microevolution of biofilm cells in response to antibiotics. npj Biofilms & Microbiomes. 2019; 5: Article number 34.
  3. Di Domenico EG, et al. The emerging role of microbial biofilm in Lyme neuroborreliosis. Front Neurol. 2018; 9: 1048.
  4. Seng R, et al. Biofilm formation of methicillin-resistant coagulase-negative staphylococci (MR-CoNS) isolated from community and hospital environments. PLoS One. 2017; 12(8): e0184172.
  5. Craft KM, et al. Methicillin-resistant Staphylococcus aureus (MRSA): Antibiotic-resistance and the biofilm phenotype. Medchemcomm. 2019; 10(8): 1231-1241.
  6. Dapa T and Unnikrishnan M. Biofilm formation by Clostridium difficileGut Microbes. 2013; 4(5): 397-402.
  7. De Vos WM. Microbial biofilms and the human intestinal microbiome. npj Biofilms and Microbiomes. 2015; 1: 15005.
  8. Puupponen-Pimia R, et al. Berry phenolics selectively inhibit the growth of intestinal pathogens. J Appl Microbiol. 2005; 98(4): 991-1000.
  9. Satoh Y and Ishihara K. Investigation of the antimicrobial activity of Bilberry (Vaccinium myrtillus L.) extract against periodontopathic bacteria. J Oral Biosci. 2020. [online].
  10. Li J, et al. Bilberry anthocyanin extract promotes intestinal barrier function and inhibits digestive enzyme activity by regulating the gut microbiota in aging rats. Food Funct. 2019; 10(1): 333-343.
  11. Brasanac-Vukanovic S, et al. Wild Bilberry (Vaccinium myrtillus L., Ericaceae) from Montenegro as a source of antioxidants for use in the production of nutraceuticals. Molecules. 2018; 23(8).
  12. Jakesevic M, et al. Effects of Bilberry (Vaccinium myrtillus) in combination with lactic acid bacteria on intestinal oxidative stress induced by ischemia-reperfusion in mouse. J Agric Food Chem. 2013; 61(14): 3468-3478.
  13. Nayak S and Mengi S. Immunostimulant activity of Noni (Morinda citrifolia) on T and B lymphocytes. Pharm Biol. 2010; 48(7): 724-731.
  14. Almeida-Souza F, et al. Morinda citrifolia reduces parasite load and modulates cytokines and extracellular matrix proteins in C57BL/6 mice infected with Leishmania (Leishmania) amazonensisPLoS Negl Trop Dis. 2016; 10(8): e0004900.
  15. Kumarasamy B, et al. Role of aqueous extract of Morinda Citrifolia (Indian Noni) ripe fruits in inhibiting dental caries-causing Streptococcus mutans and Streptococcus mitisJ Dent (Tehran). 2014; 11(6): 703-710.
  16. Banerjee S, et al. An extract of Morinda citrifolia interferes with the serum-induced formation of filamentous structures in Candida albicans and inhibits germination of Aspergillus nidulansAm J Chin Med. 2006; 34(3): 503-509.
  17. Zhang WM, et al. Antibacterial constituents of Hainan Morinda citrifolia (Noni) leaves. J Food Sci. 2016; 81(5): M1192-M1196.
  18. Abenavoli L, et al. Milk thistle in liver diseases: Past, present, future. Phytother Res. 2010; 24(10): 1423-1432.
  19. Crocenzi FA, et al. Effect of silymarin on biliary bile salt secretion in the rat. Biochem Pharmacol. 2000; 59(8): 1015-1022.
  20. Pradhan SC, Girish C. Hepatoprotective herbal drug, silymarin from experimental pharmacology to clinical medicine. Indian J Med Res. 2006; 124(5): 491-504.
  21. Dixit N, et al. Silymarin: A review of pharmacological aspects and bioavailability enhancement approaches. Indian J Pharmacol. 2007; 39(4): 172-179.
  22. Lovelace ES, et al. Silymarin suppresses basal and stimulus-induced activation, exhaustion, differentiation, and inflammatory markers in primary human immune cells. PLoS One. 2017; 12(2): e0171139.
  23. Liu CH, et al. Antiviral activities of silymarin and derivatives. Molecules. 2019; 24(8): 1552.
  24. de Oliveira DR, et al. In vitro antimicrobial and modulatory activity of the natural products silymarin and silibinin. Biomed Res Int. 2015; 2015: 292797.
  25. Janeczko M and Kochanowicz E. Silymarin, a popular dietary supplement shows anti-Candida Antibiotics (Basel). 2019; 8(4).
  26. Evren E and Yurtcu E. In vitro effects on biofilm viability and antibacterial and anti-adherent activities of Silymarin. Folia Microbiol (Praha). 2015; 60(4): 351-356.
  27. Karsch-Volk M, et al. Echinacea for preventing and treating the common cold. Cochrane Database Syst Rev. 2014; 2: CD000530.
  28. Hostettmann K. History of a plant: The example of Echinacea. Forsch Komplementarmed Klass Naturheilkd. 2003; 10(Suppl 1); 9-12.
  29. Rady MR, et al. Active compounds and biological activity of in vitro cultures of some Echinacea purpurea Bull Natl Res Cent. 2018; 42(20).
  30. Manayi A, et al. Echinacea purpurea: Pharmacology, phytochemistry and analysis methods. Pharmacogn Rev. 2015; 9(17): 63-72.
  31. Dobrange E, et al. Fructans as immunomodulatory and antiviral agents: The case of Echinacea. Biomolecules. 2019; 9(10): 615.
  32. Stermitz FR, et al. Synergy in a medicinal plant: Antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor. Proc Natl Acad Sci USA. 2000; 97(4): 1433-1437.
  33. Xie Y, et al. In vitro antifungal effects of berberine against Candida in planktonic and biofilm conditions. Drug Des Devel Ther. 2020; 14: 87-101.
  34. Ettefagh KA, et al. Goldenseal (Hydrastis canadensis) extracts synergistically enhance the antibacterial activity of berberine via efflux pump inhibition. Planta Med. 2011; 77(8): 835-840.
  35. Valverde ME, et al. Edible mushrooms: Improving human health and promoting quality life. Int J Microbiol. 2015; 2015: 376387.
  36. Dai X, et al. Consuming Lentinula edodes (Shiitake) mushrooms daily improves human immunity: A randomized dietary intervention in healthy young adults. J Am Coll Nutr. 2015; 34(6): 478-487.
  37. Kim SP, et al. The composition of a bioprocessed shiitake (Lentinus edodes) mushroom mycelia and rice bran formulation and its antimicrobial effects against Salmonella enterica enterica serovar Typhimurium strain SL1344 in macrophage cells and in mice. BMC Complement Altern Med. 2018; 18: 322.
  38. Avinash J, et al. The unexplored anticaries potential of Shiitake mushroom. Pharmacogn Rev. 2016; 10(20): 100-104.
  39. Kupcova K, et al. Antimicrobial, cytotoxic, anti-inflammatory, and antioxidant activity of culinary processed shiitake medicinal mushroom (Lentinus edodes, Agaricomycetes) and its major sulfur sensory-active compound-Lenthionine. Int J Med Mushrooms. 2018; 20(2): 165-175.
  40. Wood JN. From plant extract to molecular panacea: a commentary on Stone (1763) ‘An account of the success of the bark of the willow in the cure of the agues. Philos Trans R Soc Lond B Biol Sci. 2015; 370(1666): 20140317.
  41. Shara M and Stohs SJ. Efficacy and safety of white willow bark (Salix alba) extracts. Phytother Res. 2015; 29(8): 1112-1126.
  42. Petrovska BB and Cekovska S. Extracts from the history and medical properties of garlic. Pharmacogn Rev. 2010; 4(7): 106-110.
  43. Feng J, et al. Identification of essential oils with strong activity against stationary phase Borrelia burgdorferi. Antibiotics (Basel). 2018; 7(4): 89.
  44. Palaksha MN, et al. Antibacterial activity of garlic extract on streptomycin-resistant Staphylococcus aureus and Escherichia coli solely and in synergism with streptomycin. J Nat Sci Biol Med. 2010; 1(1): 12-15.
  45. Li WR, et al. Antifungal activity, kinetics and molecular mechanism of action of garlic oil against Candida albicansSci Rep. 2016; 6: 22805.
  46. Jakobsen TH, et al. A broad range quorum sensing inhibitor working through sRNA inhibition. Sci Rep. 2017; 7: 9857.
  47. Mohsenipour Z and Hassanshahian M. The effects of Allium sativum extracts on biofilm formation and activities of six pathogenic bacteria. Jundishapur J Microbiol. 2015; 8(8): e18971.
  48. Su X, et al. Antibacterial effects of plant-derived extracts on methicillin-resistant Staphylococcus aureusFoodborne Pathog Dis. 2012; 9(6): 573-578.
  49. Ma ZF, et al. Phytochemical constituents, health benefits, and industrial applications of grape seeds: A mini-review. Antioxidants (Basel). 2017; 6(3).
  50. Pasini F, et al. Recovery of oligomeric proanthocyanidins and other phenolic compounds with established bioactivity from grape seed by-products. Molecules. 2019; 24(4): 677.
  51. Ho KV, et al. Identifying antibacterial compounds in black walnuts (Juglans nigra) using a metabolomics approach. Metabolites. 2018; 8(4): 58.
  52. Wang J, et al. Antibacterial activity of Juglone against Staphylococcus aureus: From apparent to proteomic. Int J Mol Sci. 2016; 17(6): 965.
  53. Feng J, et al. Evaluation of natural and botanical medicines for activity against growing and non-growing forms of burgdorferiFront Med. 2020. [online].
  54. Ho KV, et al. Black Walnut (Juglans nigra) extracts inhibit proinflammatory cytokine production from lipopolysaccharide-stimulated human promonocytic cell line U-937. Front Pharmacol. 2019; 10: 1059.
  55. Saad N, et al. Enzyme-assisted extraction of bioactive compounds from raspberry (Rubus Idaeus L.) Pomace. J Food Sci. 2019; 84(6): 1371-1381.
  56. Tu P, et al. Metabolite profiling of the gut microbiome in mice with dietary administration of black raspberries. ACS Omega. 2020; 5(3): 1318-1325.
  57. Gupta PC, et al. A review on ethnobotany, phytochemistry and pharmacology of Fumaria indica (Fumitory). Asian Pac J Trop Biomed. 2012; 2(8): 665-669.
  58. Orhan IE, et al. Antiprotozoal assessment and phenolic acid profiling of five Fumaria (fumitory) species. Asian Pac J Trop Med. 2015; 8(4): 283-286.
  59. Tang X, et al. Target profiling analyses of bile acids in the evaluation of hepatoprotective effect of gentiopicroside on ANIT-induced cholestatic liver injury in mice. J Ethnopharmacol. 2016; 194(24): 63-71.
  60. Yamada H, et al. Gentiolactone, a secoiridoid dilactone from Gentiana triflora, inhibits TNF-α, iNOS and Cox-2 mRNA expression and blocks NF-κB promoter activity in murine macrophages. PLoS One. 2014; 9(11): e113834.
  61. Mirzaee F, et al. Medicinal, biological and phytochemical properties of Gentiana species. J Tradit Complement Med. 2017; 7(4): 400-408.
  62. Swamy MK, et al. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: An updated review. Evid Based Complement Alternat Med. 2016; 2016: 3012462.
  63. Cox SD, et al. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J Appl Microbiol. 2000; 88(1): 170-175.
  64. Mertas A, et al. The influence of tea tree oil (Melaleuca alternifolia) on fluconazole activity against fluconazole-resistant Candida albicans Biomed Res Int. 2015; Article ID: 590470.
  65. Fallah F, et al. The anti-mycobacterial activity of the extract of Ferula gummosaInt J Mycobacteriol. 2015; 4(Suppl 1): 166.
  66. Ghasemi Y, et al. Ferula gummosa fruits: An aromatic antimicrobial agent. Chem Nat Compd. 2005; 41: 311-314.
  67. D’Agostino M. Essential oils and their natural active compounds presenting antifungal properties. Molecules. 2019; 24(20): 3713.
  68. Roller S, et al. The antimicrobial activity of high-necrodane and other Lavender oils on methicillin-sensitive and -resistant Staphylococcus aureus (MSSA and MRSA). J Altern Complement Med. 2009; 15(3): 275-279.
  69. Lu M, et al. Bactericidal property of oregano oil against multidrug-resistant clinical isolates. Front Microbiol. 2018; 9: 2329.
  70. Goc A, et al. Anti-borreliae efficacy of selected organic oils and fatty acids. BMC Complement Alternat Med. 2019; 19: 40.
  71. Ma X, et al. Essential oils with high activity against stationary phase Bartonella henselaeAntibiotics. 2019; 8(4): 246.
  72. Cleff MB, et al. In vitro activity of Origanum vulgare essential oil against Candida Braz J Microbiol. 2010; 41(1): 116-123.
  73. Karaman M, et al. Origanum vulgare essential oil affects pathogens causing vaginal infections. J Appl Microbiol. 2017; 122(5): 1177-1185.
0
Your Cart