Quicksilver Scientific

Free Shipping on Orders over $300 (Excludes , , )
0
0
Subtotal: 0.00

No products in the cart.

Detox Qube References

Clear Way Cofactors® References https://www.quicksilverscientific.com/clearwaycofactorsreferences/

  1. Upadhyay A, et al. A review on the pharmacological aspects of Terminalia chebula. Int J Pharmacol. 10(6): 289-298.
  2. Mahesh R, et al. Effect of Terminalia Chebula aqueous extract on oxidative stress and antioxidant status in the liver and kidney of young and aged rats. Cell Biochem Funct. 2009; 27(6): 358-363.
  3. Saha S, Verma RJ. Antioxidant activity of polyphenolic extract of Terminalia chebula Retzius J Taibah Univ Sci. 2016; 10(6): 805-812.
  4. Bag A, et al. Anti-inflammatory, anti-lipid peroxidative, antioxidant and membrane stabilizing activities of hydroalcoholic extract of Terminalia chebula Pharm. 2013; 52(12): 1515-1520.
  5. Feng J, et al. Pinus Massoniana bark extract: Structure-activity relationship and biomedical potentials. Am J Chin Med. 2016; 44(8): 1559-1577.
  6. Wang C, et al. Effects of polyprenols from pine needles of Pinus massoniana on ameliorating cognitive impairment in a d-galactose-induced mouse model. Age (Dordr). 2014; 36(4)9676.
  7. Mandal A, et al. Anti-inflammatory mechanism involved in pomegranate-mediated prevention of breast cancer: The role of NF-κB and Nrf2 signaling pathways. Nutrients. 2017; 9(5): 436.
  8. Singh R, et al. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat Commun. 2019; 10(89).
  9. Sun YQ, et al. In vitro and in vivo antioxidant activities of three major polyphenolic compounds in pomegranate peel: Ellagic acid, punicalin, and punicalagin. J Integr Agr. 2017; 16(8): 1808-1818.
  10. Mairuae N, et al. Anti-inflammatory and anti-oxidative effects of Centella asiatica extract in lipopolysaccharide-stimulated BV2 microglial cells. Pharmacogn. 2019; 15(60): 140-146.
  11. Christinal J, Sumathi T. Effect of Bacopa Monniera extract on methylmercury-induced behavioral and histopathological changes in rats. Biol Trace Elem Res. 2013; 155(1): 56-64.
  12. Gonzalez-Castejon M, et al. Diverse biological activities of dandelion. Nutr Rev. 70(9): 534-547.
  13. Liu B, et al. Taraxasterol inhibits LPS-induced inflammatory response in BV2 microglia cells by activating LXRα. Front Pharmacol. 2018; 9: 278.
  14. Esatbeyoglu T, et al. Sesquiterpene lactone composition and cellular Nrf2 induction of Taraxacum officinale leaves and roots and Taraxinic Acid β-d-Glucopyranosyl Ester. J Med Food. 2017; 20(1): 71-78.
  15. Chandra N, et al. Bacterial biofilms in human gastrointestinal tract: An intricate balance between health and inflammatory bowel diseases. World J Pharmacol. 2019; 8(3): 26-40.
  16. Marsh PD, Zaura E. Dental biofilm: ecological interactions in health and disease. J Clin Periodontol. 2017; 44(S18): S12-S22.
  17. Jamal M, et al. Bacterial biofilm and associated infections. J Chin Med Assoc. 2018; 81(1): 7-11.
  18. Kurosawa Y, et al. A single-dose of oral nattokinase potentiates thrombolysis and anti-coagulation profiles. Sci Rep. 2015; 5: 11601.
  19. Iwamoto A, et al. The Japanese fermented food natto inhibits sucrose-dependent biofilm formation by cariogenic Streptococci. Food Sci Technol Res. 2018; 24(1): 129-137.
  20. Salehi B, et al. Insights on the use of α-lipoic acid for therapeutic purposes. Biomolecules. 2019; 9(8): 356.
  21. Lonsdale D, et al. Treatment of autism spectrum children with thiamine tetrahydrofurfuryl disulfide: a pilot study. Neuro Endocrinol Lett. 2002; 23(4): 303-308.
  22. Reddy SY, et al. Thiamine reduces tissue lead levels in rats: mechanism of interaction. Biometals. 2010; 23(2): 247-253.
  23. Flora SJ, and Sharma RP. Influence of dietary supplementation with thiamine on lead intoxication in rats. Biol Trace Elem Res. 1986; 10(2): 137-144.
  24. Slyshenkov VS, et al. Pantothenic acid and pantothenol increase biosynthesis of glutathione by boosting cell energetics. FEBS Lett. 2004; 569(1-3): 169-172.
  25. Eidi A, et al. Hepatoprotective effects of pantothenic acid on carbon tetrachloride-induced toxicity in rats. EXCLI J. 2012; 11: 748-759.
  26. Hsu CC, et al. Role of vitamin B6 status on antioxidant defenses, glutathione, and related enzyme activities in mice with homocysteine-induced oxidative stress. Food Nutr Res. 2015; 59: 25702.
  27. Tandon SK, et al. Influence of pyridoxine (vitamin B6) on lead intoxication in rats. Ind Health. 1987; 25(2): 93-96.
  28. Ursini F and Bindoli A. The role of selenium peroxidases in the protection against oxidative damage of membranes. Chem Phys Lipids. 1987; 44(2-4): 255-276.
  29. Spiller HA. Rethinking mercury: the role of selenium in the pathophysiology of mercury toxicity. Clin Toxicol. 2018; 56(5): 313-326.

 

IMD References quicksilverscientific.com/imdreferences/

  1. Clifton JC., 2nd Mercury exposure and public health. Pediatr Clin North Am. 2007;54(2):237–269. View Abstract
  2. US Department of Health and Human Services, Public Health Service. Toxicological profile for mercury. Atlanta: US Department of Health and Human Services; 1999. pp. 1–600.  View Abstract  
  3. Rice KM et al Environmental mercury and its toxic effects. J Prev Med Public Health. 2014;47(2):74–83. View Full Paper
  4. Berlin M et al. Accumulation and retention of mercury in the mouse: III. An autoradiographic comparison of methylmercuric dicyandiamide with inorganic mercury. Arch Environ Health 6:610, 1963. View Abstract
  5. Norseth T et al. Intestinal transport of 203Hg-labeled methyl mercury chloride: Role of biotransformation in rats. Arch Environ Health 22:568-577, 1971 View Abstract
  6. Clarkson TW et al. Excretion and absorption of methyl mercury after polythiol resin treatment. Arch Environ Health. 1973 Apr;26(4):173-6. View Abstract
  7. Clarkson TW. The three modern faces of mercury. Environ Health Perspect 2002;110:11-23. View Full Paper
  8. Deneke SM. Thiol-based antioxidants. Curr Top Cell Regul. 2000;36:151-80. View Abstract
  9. Berglund F et al. Risk of methyl mercury cumulation in man and mammals and the relation between body burden of methyl mercury and toxic effects, in Miller M, Berg GG (eds): Chemical Fallout. Springfield, Ill, Charles C Thomas Publisher, 1969, p 258.
  10. Sangvanich T. Novel oral detoxification of mercury, cadmium, and lead with thiol-modified nanoporous silica. ACS Appl Mater Interfaces. 2014 Apr 23;6(8):5483-93. View Full Paper
  11. Gill R et al. Low level exposure to inorganic mercury interferes with B cell receptor signaling in transitional type 1 B cells. Toxicol Appl Pharmacol. 2017 Sep 1;330:22-29. View Abstract
  12. Guardiola FA et al. Mercury accumulation, structural damages, and antioxidant and immune status changes in the Gilthead Seabream (Sparus aurata L.) exposed to methylmercury. Arch Environ Contam Toxicol. 2016 May;70(4):734-46. View Abstract
  13. Desforges JP et al. Immunotoxic effects of environmental pollutants in marine mammals. Environ Int. 2016 Jan;86:126-39. View Abstract
  14. de Vos G et al. Selective effect of mercury on Th2-type cytokine production in humans. Immunopharmacol Immunotoxicol. 2007;29(3-4):537-548. View Abstract
  15. Crowe W et al. Mercury as an environmental stimulus in the development of autoimmunity – A systematic review. Autoimmun Rev. Jan 2017;16(1):72-80 View Abstract
  16. Clarkson TW. The toxicology of mercury. Crit Rev Clin Lab Sci. 1997;34(4):369-403.
  17. Morris G et al. The putative role of environmental mercury in the pathogenesis and pathophysiology of autism spectrum disorers and subtypes. Mol Neurobiol. 2017 Jul 22. View Abstract
  18. Geier DA, Kern JK, Geier MR Increased risk for an atypical autism diagnosis following Thimerosal-containing vaccine exposure in the United States: A prospective longitudinal case-control study in the Vaccine Safety Datalink. J Trace Elem Med Biol. 2017 Jul;42:18-24. View Abstract
  19. Pantaleão TU, Ferreira ACF, Santos MCS et al. Effect of thimerosal on thyroid hormones metabolism in rats. Endocr Connect. 2017 Nov;6(8):741-74 View Full Paper
  20. Zhu X, Kusaka Y, Sato K, et al. The endocrine disruptive effects of mercury. Environ Health Prev Med. 2000 Jan;4(4):174-83. View Full Paper
  21. Kisakol G. Dental amalgam implantation and thyroid autoimmunity Bratisl Lek Listy. 2014;115(1):22-4. View Abstract
  22. Iavicoli I, Fontana L, Bergamaschi A. The effects of metals as endocrine disruptors. J Toxicol Environ Health B Crit Rev. Mar 2009;12(3):206-223.
  23. Zeng Q, Feng W, Zhou B Urinary metal concentrations in relation to semen quality: a cross-sectional study in China. Environ Sci Technol. 2015 Apr 21;49(8):5052-9. View Abstract
  24. Buck Louis GM, Smarr MM, Sundaram R et al. Low-level environmental metals and metalloids and incident pregnancy loss. Reprod Toxicol. 2017 Apr;69:68-74. View Abstract
  25. Mieiro CL, Pereira ME, Duarte AC, Pacheco M. Brain as a critical target of mercury in environmentally exposed fish (Dicentrarchus labrax)–bioaccumulation and oxidative stress profiles. Aquat Toxicol. 2011;103:233–240. [PubMed] [Google Scholar]
  26. Kim JS, et al. Increased serum glutamate in depressed patients. Arch Psychiatr Nervenkr. 1982;232 (4):299–304.  View Abstract
  27. Mitani H et al. Correlation between plasma levels of glutamate, alanine and serine with severity of depression. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30 (6):1155–8. [PubMed] [Google Scholar]
  28. Levine J et al. Increased cerebrospinal fluid glutamine levels in depressed patients. Biol Psychiatry. 2000;47 (7):586–93.  View Abstract  
  29. Schoepp DD. Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system. J Pharmacol Exp Ther. 2001;299 (1):12–20. View Abstract
  30. Genchi G et al. Mercury exposure and heart diseases. Int J Environ Res Public Health. 2017;14(1):74 View Full Paper
  31. Fernandes Azevedo B et al. Toxic effects of mercury on the cardiovascular and central nervous systems. J Biomed Biotechnol. 2012;2012:949048. View Full Paper
  32. Breton J et al. Ecotoxicology inside the gut: impact of heavy metals on the mouse microbiome. BMC Pharmacol Toxicol. 2013;14:62. View Full Paper

 

Glutathione References https://www.quicksilverscientific.com/glutathionereferences/

  1. Homma T et al. Application of glutathione as anti-oxidative and anti-aging drugs. Curr Drug Metab. 2015;16(7):560-71 View Abstract
  2. Ighodaroab OM et al. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid.  Alexandria Journal of Medicine 2018 (54): 287-293 View Abstract
  3. Szarka A et al. The ascorbate-glutathione-α-tocopherol triad in abiotic stress response. Int J Mol Sci. 2012;13(4):4458-83 View Full Paper
  4. Balendiran GK et al. Cell Biochem Funct. The role of glutathione in cancer. 2004 Nov-Dec;22(6):343-52. View Abstract
  5. Mari M et al. Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal. 2009 Nov;11(11):2685-70 View Full Paper
  6. Perricone C et al. Glutathione: a key player in autoimmunity. Autoimmun Rev. 2009 Jul;8(8):697-701. View Abstract
  7. Dröge W et al. Glutathione and immune function. Proc Nutr Soc. 2000 Nov;59(4):595-600. Review. View Abstract
  8. Bajic VP et al. Glutathione “redox homeostasis” and its relation to cardiovascular disease. Oxidative Medicine and Cellular Longevity 2019 View Abstract
  9. Pizzorno J. Glutathione! Integrative Medicine 2014 (13):1:8-12 View Full Paper
  10. Forman HJ. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med. 2009 Feb-Apr;30(1-2):1-12. View Abstract
  11. Hodges RE et al. Modulation of metabolic detoxification pathways using foods and food-derived components: a scientific review with clinical application. J Nutr Metab. 2015;2015:760689 View Full Paper
  12. Keum YS. Regulation of Nrf2-mediated phase II detoxification and anti-oxidant genes. Biomol Ther. 2012;20(2):144-151. View Abstract
  13. Fraternale A et al. Glutathione and glutathione derivatives in immunotherapy. Biol Chem. 2017 Feb 1;398(2):261-275 View Abstract
  14. Kamide Y. Allergy. Intracellular glutathione redox status in human dendritic cells regulates IL-27 production and T-cell polarization. Allergy. 2011 Sep;66(9):1183-92. View Abstract
  15. Dröge W et al. Functions of glutathione and glutathione disulfide in immunology and immunopathology. FASEB J 1994;8:1131–8. View Abstract
  16. Gambhir JK et al. Correlation between blood antioxidant levels and lipid peroxidation in rheumatoid arthritis. Clin Biochem 1997;30:351–5. View Abstract
  17. Ortona E, Redox state, cell death and autoimmune diseases: a gender perspective. Autoimmun Rev 2008;7:579–84. View Abstract
  18. Griffiths HR. Is the generation of neo-antigenic determinants by free radicals central to the development of autoimmune rheumatoid disease? Autoimmun Rev 2008;7:544–9. View Abstract
  19. Burek CL, Rose NR. Autoimmune thyroiditis and ROS. Autoimmun Rev 2008;7:530–7. View Abstract
  20. Gheita TA et al.  Measurement of malondialdehyde, glutathione, and glutathione peroxidase in SLE patients. Methods Mol Biol. 2014;1134:193-9 View Abstract
  21. Kumar D et al. A link between maternal malnutrition and depletion of glutathione in the developing lens: a possible explanation for idiopathic childhood cataract? Clin Exp Optom. 2013 Nov;96(6):523-8 View Abstract
  22. Teskey G. Glutathione as a marker for human disease. Adv Clin Chem. 2018;87:141-159. View Abstract
  23. Jiang S et al. Glutathione protects against hepatic injury in a murine model of primary Sjögren’s syndrome. Bosn J Basic Med Sci. 2016 Aug 2;16(3):227-31 View Abstract
  24. Sinha R et al. Oral supplementation with liposomal glutathione elevates body stores of glutathione and markers of immune function. Eur J Clin Nutr. 2018 Jan;72(1):105-111 View Abstract
  25. Drisko JA. Chelation Therapy. In: Integrative Medicine (Fourth Edition) 2018: (107): 1004-1014.
  26. Lawley SD et al. Mathematical modeling of the effects of glutathione on arsenic methylation. Theor Biol Med Model. 2014 May 16;11:20. View Abstract
  27. Guildford FT et al. Deficient glutathione in the pathophysiology of mycotoxin-related illness. Toxins (Basel). 2014 Feb 10;6(2):608-23 View Full Paper
  28. Hope JH et al. A review of the diagnosis and treatment of ochratoxin a inhalational exposure associated with human illness and kidney disease including focal segmental glomerulosclerosis. J. Environ. Public Health 2012: 2012, 835059. View Abstract
  29. Damy T et al. Glutathione deficiency in cardiac patients is related to the functional status and structural cardiac abnormalities. PLoS One 2009. (4):3: e4781 vol. 4. View Abstract
  30. Biswas SK et al. Depressed glutathione synthesis precedes oxidative stress and atherogenesis in Apo-E−/− mice. Biochemical and Biophysical Research Communications 2005 (338): 3: 1368–1373 View Abstract
  31. Shimizu H et al. Relationship between plasma glutathione levels and cardiovascular disease in a defined population: the Hisayama study.  Stroke. 2004 (35):9: 2072-2077 View Abstract
  32. de la Asuncion JG et al. Mitochondrial glutathione oxidation correlates with age-associated oxidative damage to mitochondrial DNA. The FASEB Journal. 1996;10(2):333–338. View Abstract
  33. Rae CD et al. Glutathione in the human brain: Review of its roles and measurement by magnetic resonance spectroscopy. Anal Biochem. 2017 Jul 15;529:127-143. View Abstract
  34. Saharan S et al. The emerging role of glutathione in Alzheimer’s disease J Alzheimers Dis. 2014;40(3):519-29. View Abstract
  35. Gambhir JK et al. Correlation between blood antioxidant levels and lipid peroxidation in rheumatoid arthritis. Clin Biochem 1997;30:351–5. View Abstract
  36. Ortona E, Redox state, cell death and autoimmune diseases: a gender perspective. Autoimmun Rev 2008;7:579–84. View Abstract
  37. Griffiths HR. Is the generation of neo-antigenic determinants by free radicals central to the development of autoimmune rheumatoid disease? Autoimmun Rev 2008;7:544–9. View Abstract
  38. Burek CL, Rose NR. Autoimmune thyroiditis and ROS. Autoimmun Rev 2008;7:530–7. View Abstract
  39. Gheita TA et al.  Measurement of malondialdehyde, glutathione, and glutathione peroxidase in SLE patients. Methods Mol Biol. 2014;1134:193-9 View Abstract
  40. Kumar D et al. A link between maternal malnutrition and depletion of glutathione in the developing lens: a possible explanation for idiopathic childhood cataract? Clin Exp Optom. 2013 Nov;96(6):523-8 View Abstract
  41. Teskey G. Gluathione as a marker for human disease. Adv Clin Chem. 2018;87:141-159. View Abstract
  42. Jiang S et al. Glutathione protects against hepatic injury in a murine model of primary Sjögren’s syndrome. Bosn J Basic Med Sci. 2016 Aug 2;16(3):227-31 View Abstract

 

Vitamin C w/RLA References https://www.quicksilverscientific.com/vitamincrlareferences/

  1. Bendich A et al. The antioxidant role of vitamin C. Adv Free Radic Biol Med. 1986;2:419-44 View Abstract
  2. Carr AC. Vitamin C and immune function. Nutrients. 2017 Nov 3;9(11). View Full Paper
  3. Stoyanovsky DA et al. Endogenous ascorbate regenerates vitamin E in the retina directly and in combination with exogenous dihydrolipoic acid. Curr Eye Res. 1995 Mar;14(3):181-9. View Abstract
  4. Biewenga GP et al. The pharmacology of the antioxidant lipoic acid. Gen Pharmacol. 1997 Sep;29(3):315-31. View Abstract
  5. Tibullo D et al. Biochemical and clinical relevance of alpha lipoic acid: antioxidant and anti-inflammatory activity, molecular pathways and therapeutic potential. Inflamm Res. 2017 Nov;66(11):947-959. View Abstract
  6. Smith AR et al. Lipoic acid as a potential therapy for chronic diseases associated with oxidative stress. Curr Med Chem. 2004 May;11(9):1135-46. View Abstract
  7. Kagan VE et al. Direct evidence for recycling of myeloperoxidase-catalyzed phenoxyl radicals of a vitamin E homologue, 2,2,5,7,8-pentamethyl-6-hydroxy chromane, by ascorbate/dihydrolipoate in living HL-60 cells. Biochim Biophys Acta. 2003 Mar 17;1620(1-3):72-84 View Abstract
  8. Kilic F et al. Modeling cortical cataractogenesis XX. In vitro effect of alpha-lipoic acid on glutathione concentrations in lens in model diabetic cataractogenesis. Biochem Mol Biol Int. 1998 Oct;46(3):585-95 View Abstract
  9. Hagen TM et al. (R)-alpha-lipoic acid-supplemented old rats have improved mitochondrial function, decreased oxidative damage, and increased metabolic rate. FASEB J. 1999 Feb;13(2):411-8. View Abstract
  10. Kramer K et al. R-alpha-lipoic acid. In: Kramer K, Hoppe P, Packer L, eds. Nutraceuticals in Health and Disease Prevention. New York: Marcel Dekker, Inc.; 2001:129-164.
  11. Schleicher RL et al. Serum vitamin C and the prevalence of vitamin C deficiency in the United States: 2003–2004 National Health and Nutrition Examination Survey (NHANES). Am. J. Clin. Nutr. 2009, 90, 1252–1263. View Abstract
  12. Niki E. Interaction of ascorbate and alpha-tocopheral. Ann N Y Acad Sci. 1987;498:186-99. View Abstract
  13. McCay PB. Vitamin E: Interactions with free radicals and ascorbate. Ann. Rev. Nutr.1985 5:323-340 View Abstract
  14. Dormandy TL. Free-radical oxidation and antioxidants. Lancet 1978 i: 647-650 View Abstract
  15. Salehi B. Insights on the use of α-Lipoic acid for therapeutic purposes. Biomolecules. 2019 Aug 9;9(8). View Full Paper
  16. VE Kagan et al.Dihydrolipoic acid—a universal antioxidant both in the membrane and in the aqueous phase. Biochem Pharmacol, 44 (1992), pp. 1637-1649 View Abstract
  17. Shay KP et al. Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential. Biochim Biophys Acta. 2009;1790:1149–1160. View Full Paper
  18. Antioxidant and prooxidant activities of alpha-lipoic acid and dihydrolipoic acid. J Clin Biochem Nutr. 2015 Jul; 57(1): 21–26 View Abstract
  19. Goralska M et al. Alpha lipoic acid changes iron uptake and storage in lens epithelial cells. Exp. Eye Res. 2003, 76, 241–248. View Abstract
  20. Sun H et al. Alphalipoic Acid Prevents Oxidative Stress and Peripheral Neuropathy in Nab-Paclitaxel-Treated Rats through the Nrf2 Signalling Pathway. Oxid Med Cell Longev. 2019 Feb 10;2019:3142732. View Full Paper
  21. Geesin JC, Darr D et al. Ascorbic acid specifically increases type I and type III procollagen messenger RNA levels in human skin fibroblast. J Invest Dermatol 1988;90:420-424. View Abstract
  22. Ross R et al. Wound healing and collagen formation. II. Fine structure in experimental scurvy. J Cell Biol 1962;12:533-551.  View Abstract
  23. Kramer GM et al. Ascorbic acid treatment on early collagen production and wound healing in the guinea pig. J Periodontol 1979;50:189-192.  View Abstract
  24. DePhillipo NN et al. Efficacy of Vitamin C Supplementation on Collagen Synthesis and Oxidative Stress After Musculoskeletal Injuries: A Systematic Review. Orthop J Sports Med. 2018;6(10):2325967118804544. View Full Paper
  25. Geesin JC et al. Ascorbic acid specifically increases type I and type III procollagen messenger RNA levels in human skin fibroblast. J Invest Dermatol 1988;90:420-424. View Abstract
  26. Humbert PG, Haftek M et al. Topical ascorbic acid on photoaged skin. Clinical, topographical and ultrastructural evaluation: double-blind study vs. placebo. Exp Dermatol 2003;12:237-244. View Abstract
  27. Tebbe B, Wu S, et al. L-ascorbic acid inhibits UVA-induced lipid peroxidation and secretion of IL-1alpha and IL-6 in cultured human keratinocytes in vitro. J Invest Dermatol 1997;108:302-306 View Abstract
  28. Carr AC et al. Vitamin C and immune function. Nutrients. 2017;9(11):1211. Published 2017 Nov 3. View Full Paper
  29. Ran L et al. Extra dose of vitamin C based on a daily supplementation shortens the common cold: a meta-analysis of 9 randomized controlled trials. Biomed Res Int. 2018 Jul 5;2018:1837634. View Abstract
  30. Dinicola S et al. Alpha-Lipoic Acid downregulates IL-1 and IL-6 by DNA hypermethylation in SK-N-BE neuroblastoma cells. Antioxidant 2017, 6, 74. View Abstract
  31. Khalili M et al. Does lipoic acid consumption a_ect the cytokine profile in multiple sclerosis patients: A double-blind, placebo-controlled, randomized clinical trial. Neuroimmunomodulation 2014, 21, 291–296. View Abstract
  32. Zhang J et al. Regeneration of glutathione by α-lipoic acid via Nrf2/ARE signaling pathway alleviates cadmium-induced HepG2 cell toxicity.
  33. Environ Toxicol Pharmacol. 2017 Apr;51:30-37. View Abstract
  34. Shi C. α-Lipoic acid protects against the cytotoxicity and oxidative stress induced by cadmium in HepG2 cells through regeneration of glutathione by glutathione reductase via Nrf2/ARE signaling pathway.Environ Toxicol Pharmacol. 2016 Jul;45:274-81. View Abstract
  35. Harada S et al. An association between idiopathic Parkinson’s disease and polymorphisms of phase II detoxification enzymes: glutathione S-transferase M1 and quinone oxidoreductase 1 and 2. Biochem Biophys Res Commun. 2001 Nov 9;288(4):887-92 View Abstract
  36. Zhang Y. Phase II Enzymes. Encyclopedia of Cancer, Ed: Manfred Schwab. Springer 2011 View Full Paper
  37. Spector AA et al. Membrane lipid composition and cellular function. J Lipid Res. 1985 Sep;26(9):1015-35 View Full Paper
  38. Porter CJ. Drug delivery to the lymphatic system. Crit Rev Ther Drug Carrier Syst. 1997;14(4):333-93 View Full Paper
  39. Ahn H et al. Liposomal delivery systems for intestinal lymphatic drug transport. Biomater Res. 2016 Nov 23;20:36 View Full Paper
  40. Alyautdin R et al. Nanoscale drug delivery systems and the blood brain barrier. Int J Nanomedicine. 2014 Feb 7;9:795-811 View Full Paper
0
    0
    Your Cart
    You're 50.00 away from free shipping.
    Your cart is empty
      Calculate Shipping
      Apply Coupon