Quicksilver Scientific

Free ground shipping over $50 (excludes HI, AK, & PR)

0

Unsupported Browser

This website will offer limited functionality in this browser. We only support the recent versions of major browsers like Chrome, Firefox, Safari, and Edge.

The One References

  1. Ryan MT. Mitochondria – the energy powerhouses. Semin Cell Dev Biol. 2018 Apr;76:130-131. View Abstract
  2. Linnane AW et al. Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet. 1989 Mar 25;1(8639):642-5 View Abstract
  3. Harris CB. Dietary pyrroloquinoline quinone (PQQ) alters indicators of inflammation and mitochondrial-related metabolism in human subjects. J Nutr Biochem. 2013 Dec;24(12):2076-84. View Full Paper
  4. Sharma A. Coenzyme Q10 and heart failure: a state of the art review. Circ Heart Fail. 2016 Apr;9(4):e002639. View Full Paper
  5. Vaquero EC et al. Tocotrienols: balancing the mitochondrial crosstalk between apoptosis and autophagy. Autophagy. 2007 Nov-Dec;3(6):652-4. View Abstract
  6. De Oliveira MR et al. Resveratrol and the mitochondria: From triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view. Biochim Biophys Acta. 2016 Apr;1860(4):727-45. View Abstract
  7. Panossian A et al. Evidence-based efficacy of adaptogens in fatigue, and molecular mechanisms related to their stress-protective activity. Curr Clin Pharmacol. 2009 Sep;4(3):198-219 View Abstract
  8. Saihara K et al. Pyrroloquinoline Quinone, a redox-active o-Quinone, stimulates mitochondrial biogenesis by activating the SIRT1/PGC-1α signaling pathway. Biochemistry. 2017 Dec 19;56(50):6615-6625 View Abstract
  9. Pang KL et al. The role of tocotrienol in protecting against metabolic diseases. Molecules. 2019 Mar 6;24(5). View Full Paper
  10. Springer M et al. Resveratrol and its human metabolites-effects on metabolic health and obesity. Nutrients. 2019 Jan 11;11(1). pii: E143. View Full Paper
  11. Most J et al. Calorie restriction in humans: An update. Ageing Res Rev. 2017 Oct;39:36-45 View Full Paper
  12. National Institute of General Medical Sciences. Inside the Cell. Available at: https://www.nigms.nih.gov/education/Booklets/Inside-the-Cell/Pages/Home.aspx Accessed 10-17-2019
  13. Zhou Z et al. Mitochondrial metabolism in major neurological diseases. Cells. 2018 Nov 23;7(12). View Full Paper
  14. Dunn D et al. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol. 2015 Dec;6:472-485. View Full Paper
  15. Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine Annu Rev Genet. 2005;39:359-407. View Full Paper
  16. Zhang Y, Xu H. Translational regulation of mitochondrial biogenesis. Biochem Soc Trans. 2016 Dec 15;44(6):1717-1724. View Abstract
  17. Meyer JN et al. Mitochondria as a target of environmental toxicants. Toxicol Sci. 2013;134(1):1–17. View Full Paper
  18. Misra HS et al. Pyrroloquinoline-quinone and its versatile roles in biological processes. J Biosci 2012;37:313–25 View Abstract
  19. Chowanadisai W et al. Pyrroloquinoline quinone stimulates mitochondrial biogenesis through cAMP response element-binding protein phosphorylation and increased PGC-1alpha expression. J Biol Chem 2010;285:142–52. View Full Paper
  20. Villegas R et al. Genetic variation in the peroxisome proliferator-activated receptor (PPAR) and peroxisome proliferator-activated receptor gamma co-activator 1 (PGC1) gene families and type 2 diabetes.Ann Hum Genet. 2014 Jan;78(1):23-32 View Abstract
  21. Bauerly K et al. Altering pyrroloquinoline quinone nutritional status modulates mitochondrial, lipid, and energy metabolism in rats. PLoS One 2011;6:e21779 View Full Paper
  22. Rucker R et al. Potential physiological importance of pyrroloquinoline quinone. Altern Med Rev. 2009 Sep;14(3):268-77 View Abstract
  23. Stites T et al. Pyrroloquinoline quinone modulates mitochondrial quantity and function in mice. J Nutr. 2006 Feb;136(2):390-6. View Abstract
  24. Wen H et al. Mini-review; functions and action mechanisms of PQQ in osteoporosis and neuro injury. Neurosci Lett. 2018 Nov 20;687:104-110 View Abstract
  25.  Zhang Q, Ding M, Gao XR, Ding F. Pyrroloquinoline quinone rescues hippocampal neurons from glutamate-induced cell death through activation of Nrf2 and up-regulation of antioxidant genes. Genet Mol Res. 2012 Aug 16;11(3):2652-64. View Abstract
  26. Zhu BQ et al. Comparison of pyrroloquinoline quinone and/or metoprolol on myocardial infarct size and mitochondrial damage in a rat model of ischemia/reperfusion injury. J Cardiovasc Pharmacol Ther. 2006 Jun;11(2):119-28 View Abstract
  27. Tao R et al. Pyrroloquinoline quinone preserves mitochondrial function and prevents oxidative injury in adult rat cardiac myocytes. Biochem Biophys Res Commun. 2007 Nov 16;363(2):257-62 View Abstract
  28. Sohal RS et al. Coenzyme Q, oxidative stress and aging. Mitochondrion. 2007 Jun;7 Suppl:S103-11.
  29. Schniertshauer D et al. Age-dependent loss of mitochondrial function in epithelial tissue can be reversed by Coeznyme Q10. J Aging Res. 2018 Sep 5;2018:6354680. View Full Paper
  30. Ben-Meir A et al. Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging.Aging Cell. 2015 Oct;14(5):887-95. View Full Paper
  31. Takahashi, M. Water-soluble CoQ10 as a promising, anti-aging agent for neurological dysfunction in brain mitochondria. Antioxidants (Basel). 2019 Mar 11;8(3). View Full Paper
  32. Mortensen SA et al. Q-SYMBIO Study Investigators. The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: Results From Q-SYMBIO: A Randomized Double-Blind Trial. JACC Heart Fail. 2014 Dec;2(6):641-9. View Abstract
  33. Ishii N. Coenzyme Q10 can prolong C. elegans lifespan by lowering oxidative stress Mech Ageing Dev. 2004 Jan;125(1):41-6. View Abstract
  34. Aberg F et al. Distribution and redox state of ubiquinones in rat and human tissues. Arch Biochem Biophys. 1992 Jun;295(2):230-4. View Abstract
  35. Ingram DK et al. Calorie restriction mimetics: Can you have your cake and eat it, too? Ageing Research Reviews 2015 20: 46–62 View Abstract
  36. Pollack RM et al. Resveratrol improves vascular function and mitochondrial number but not glucose metabolism in older adults. J Gerontol A Biol Sci Med Sci. 2017 View Abstract
  37. Tellone E et al. Resveratrol: in Nonvitamin and Nonmineral Nutritional Supplements, Academic Press 2019 View Abstract
  38. Baxter RA et al. Anti-aging properties of resveratrol: review and report of a potent new antioxidant skin care formulation.  J Cosmet Dermatol. 2008 Mar;7(1):2-7. View Abstract
  39. Valdecantos MP et al. Vitamin C, resveratrol and lipoic acid actions on isolated rat liver mitochondria: all antioxidants but different. Redox. Rep. 15 (5), 207–216. View Abstract
  40. Csiszar A, Labinskyy N, Pinto JT, et al. Resveratrol induces mitochondrial biogenesis in endothelial cells. Am J Physiol Heart Circ Physiol. 2009 Jul;297(1):H13-20. View Full Paper
  41. Menzies KJ, Singh K, Saleem A, Hood DA. Sirtuin 1-mediated effects of exercise and resveratrol on mitochondrial biogenesis. J Biol Chem. 2013 Mar 8;288(10):6968-79. View Full Paper
  42. Park D et al. Resveratrol induces autophagy by directly inhibiting mTOR through ATP competition Sci Rep. 2016 Feb 23;6:21772 View Full Paper
  43. Ahsan H et al. Pharmacological potential of tocotrienols: a review. Nutrition & Metabolism 2014. View Full Paper
  44. Kannappan R et al. Tocotrienols fight cancer by targeting multiple cell signaling pathways Genes Nutr. 2012 Jan;7(1):43-52. doi: 10.1007/s12263-011-0220-3. View Full Paper
  45. Qureshi AA et al. Dose-dependent modulation of lipid parameters, cytokines and RNA by δ-tocotrienol in hypercholesterolemic subjects restricted to AHA Step-1 diet British Journal of Medicine & Medical Research 6(4): 351-366, 2015, Article no. BJMMR.2015.211 View Full Paper
  46. Qureshi AA et al. Suppression of nitric oxide Production and cardiovascular risk factors in healthy seniors and hypercholesterolemic subjects by a combination of polyphenols and vitamins. J Clin Exp Cardiolog 2012 S5:008. View Full Paper
  47. Zou Z et al. Antioxidant activities of annatto and palm tocotrienol-rich fractions in fish oil and structured lipid-based infant formula emulsion Food Chemistry 2015 ; 168: 504–511 View Abstract
  48. Panossian A et al. Evidence-based efficacy of adaptogens in fatigue, and molecular mechanisms related to their stress-protective activity.Curr Clin Pharmacol. 2009 Sep;4(3):198-219. View Abstract
  49. Cui J et al. Gynostemma pentaphyllum: identification of major sapogenins and differentiation from Panax species. Eur J Pharm Sci. 1999 Jul; 8(3):187-91. View Abstract
  50. Yantao Li. Anti-cancer effects of Gynostemma pentaphyllum (Thunb.) Makino (Jiaogulan) Chin Med. 2016; 11: 43. View Full Paper
  51. Dunja S et al. Phenolic acids significantly contribute to antioxidant potency of Gynostemma pentaphyllum aqueous and methanol extracts. Industrial Crops and Products 2016 (84): 104-107 View Abstract
  52. Scholey A. Effects of American ginseng (Panax quinquefolius) on neurocognitive function: an acute, randomised, double-blind, placebo-controlled, crossover study. Psychopharmacology (2010) 212:345–356 View Abstract
  53. Portinho JA et al, Efeitos benéficos do açaí. Int. J. Nutrol. 2012. 5, 15–20. View Abstract
  54. Schauss, AG et al. The effect of açai (Euterpe spp.) fruit pulp on brain health and performance. Bioactive Nutraceuticals and Dietary Supplements in Neurological and Brain Disease. 19) Elsevier Science. 2015. (19): 179–186. View Abstract
  55. Tahir S. Goji Berry (Lycium barbarum)— A Superfood. In: Nonvitamin and Nonmineral Nutritional Supplements. 2019 Elsevier Inc. View Abstract
0
Your Cart